SpoT-Mamba: Learning Long-Range Dependency on Spatio-Temporal Graphs with Selective State Spaces

Spatio-temporal graph (STG) forecasting is a critical task with extensive applications in the real world, including traffic and weather forecasting. Although several recent methods have been proposed to model complex dynamics in STGs, addressing long-range spatio-temporal dependencies remains a sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Choi, Jinhyeok, Kim, Heehyeon, An, Minhyeong, Whang, Joyce Jiyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Choi, Jinhyeok
Kim, Heehyeon
An, Minhyeong
Whang, Joyce Jiyoung
description Spatio-temporal graph (STG) forecasting is a critical task with extensive applications in the real world, including traffic and weather forecasting. Although several recent methods have been proposed to model complex dynamics in STGs, addressing long-range spatio-temporal dependencies remains a significant challenge, leading to limited performance gains. Inspired by a recently proposed state space model named Mamba, which has shown remarkable capability of capturing long-range dependency, we propose a new STG forecasting framework named SpoT-Mamba. SpoT-Mamba generates node embeddings by scanning various node-specific walk sequences. Based on the node embeddings, it conducts temporal scans to capture long-range spatio-temporal dependencies. Experimental results on the real-world traffic forecasting dataset demonstrate the effectiveness of SpoT-Mamba.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069346754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069346754</sourcerecordid><originalsourceid>FETCH-proquest_journals_30693467543</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCIr2HQ44B2rS1svqddDFdq_HeqyVNolJqvj2KvgATv_wfx3WF1KO-TQSoscC525hGIpkIuJY9tkxNTrje2xOOIcdoVWVKmGnVckPqEqCJRlSZ1LFC7SC1KCvNM-oMdpiDRuL5urgWfkrpFRT4asHQerR09cW5Iase8HaUfDrgI3Wq2yx5cbqe0vO5zfdWvVZuQyTmYySSRzJ_9QbWQFECg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069346754</pqid></control><display><type>article</type><title>SpoT-Mamba: Learning Long-Range Dependency on Spatio-Temporal Graphs with Selective State Spaces</title><source>Free E- Journals</source><creator>Choi, Jinhyeok ; Kim, Heehyeon ; An, Minhyeong ; Whang, Joyce Jiyoung</creator><creatorcontrib>Choi, Jinhyeok ; Kim, Heehyeon ; An, Minhyeong ; Whang, Joyce Jiyoung</creatorcontrib><description>Spatio-temporal graph (STG) forecasting is a critical task with extensive applications in the real world, including traffic and weather forecasting. Although several recent methods have been proposed to model complex dynamics in STGs, addressing long-range spatio-temporal dependencies remains a significant challenge, leading to limited performance gains. Inspired by a recently proposed state space model named Mamba, which has shown remarkable capability of capturing long-range dependency, we propose a new STG forecasting framework named SpoT-Mamba. SpoT-Mamba generates node embeddings by scanning various node-specific walk sequences. Based on the node embeddings, it conducts temporal scans to capture long-range spatio-temporal dependencies. Experimental results on the real-world traffic forecasting dataset demonstrate the effectiveness of SpoT-Mamba.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nodes ; State space models ; Weather forecasting</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Choi, Jinhyeok</creatorcontrib><creatorcontrib>Kim, Heehyeon</creatorcontrib><creatorcontrib>An, Minhyeong</creatorcontrib><creatorcontrib>Whang, Joyce Jiyoung</creatorcontrib><title>SpoT-Mamba: Learning Long-Range Dependency on Spatio-Temporal Graphs with Selective State Spaces</title><title>arXiv.org</title><description>Spatio-temporal graph (STG) forecasting is a critical task with extensive applications in the real world, including traffic and weather forecasting. Although several recent methods have been proposed to model complex dynamics in STGs, addressing long-range spatio-temporal dependencies remains a significant challenge, leading to limited performance gains. Inspired by a recently proposed state space model named Mamba, which has shown remarkable capability of capturing long-range dependency, we propose a new STG forecasting framework named SpoT-Mamba. SpoT-Mamba generates node embeddings by scanning various node-specific walk sequences. Based on the node embeddings, it conducts temporal scans to capture long-range spatio-temporal dependencies. Experimental results on the real-world traffic forecasting dataset demonstrate the effectiveness of SpoT-Mamba.</description><subject>Nodes</subject><subject>State space models</subject><subject>Weather forecasting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCIr2HQ44B2rS1svqddDFdq_HeqyVNolJqvj2KvgATv_wfx3WF1KO-TQSoscC525hGIpkIuJY9tkxNTrje2xOOIcdoVWVKmGnVckPqEqCJRlSZ1LFC7SC1KCvNM-oMdpiDRuL5urgWfkrpFRT4asHQerR09cW5Iase8HaUfDrgI3Wq2yx5cbqe0vO5zfdWvVZuQyTmYySSRzJ_9QbWQFECg</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Choi, Jinhyeok</creator><creator>Kim, Heehyeon</creator><creator>An, Minhyeong</creator><creator>Whang, Joyce Jiyoung</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240617</creationdate><title>SpoT-Mamba: Learning Long-Range Dependency on Spatio-Temporal Graphs with Selective State Spaces</title><author>Choi, Jinhyeok ; Kim, Heehyeon ; An, Minhyeong ; Whang, Joyce Jiyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30693467543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Nodes</topic><topic>State space models</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jinhyeok</creatorcontrib><creatorcontrib>Kim, Heehyeon</creatorcontrib><creatorcontrib>An, Minhyeong</creatorcontrib><creatorcontrib>Whang, Joyce Jiyoung</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jinhyeok</au><au>Kim, Heehyeon</au><au>An, Minhyeong</au><au>Whang, Joyce Jiyoung</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SpoT-Mamba: Learning Long-Range Dependency on Spatio-Temporal Graphs with Selective State Spaces</atitle><jtitle>arXiv.org</jtitle><date>2024-06-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Spatio-temporal graph (STG) forecasting is a critical task with extensive applications in the real world, including traffic and weather forecasting. Although several recent methods have been proposed to model complex dynamics in STGs, addressing long-range spatio-temporal dependencies remains a significant challenge, leading to limited performance gains. Inspired by a recently proposed state space model named Mamba, which has shown remarkable capability of capturing long-range dependency, we propose a new STG forecasting framework named SpoT-Mamba. SpoT-Mamba generates node embeddings by scanning various node-specific walk sequences. Based on the node embeddings, it conducts temporal scans to capture long-range spatio-temporal dependencies. Experimental results on the real-world traffic forecasting dataset demonstrate the effectiveness of SpoT-Mamba.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3069346754
source Free E- Journals
subjects Nodes
State space models
Weather forecasting
title SpoT-Mamba: Learning Long-Range Dependency on Spatio-Temporal Graphs with Selective State Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SpoT-Mamba:%20Learning%20Long-Range%20Dependency%20on%20Spatio-Temporal%20Graphs%20with%20Selective%20State%20Spaces&rft.jtitle=arXiv.org&rft.au=Choi,%20Jinhyeok&rft.date=2024-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3069346754%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069346754&rft_id=info:pmid/&rfr_iscdi=true