ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation
This study introduces an approach to optimize Parameter Efficient Fine Tuning (PEFT) for Pretrained Language Models (PLMs) by implementing a Shared Low Rank Adaptation (ShareLoRA). By strategically deploying ShareLoRA across different layers and adapting it for the Query, Key, and Value components o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Song, Yurun Zhao, Junchen Harris, Ian G Sangeetha Abdu Jyothi |
description | This study introduces an approach to optimize Parameter Efficient Fine Tuning (PEFT) for Pretrained Language Models (PLMs) by implementing a Shared Low Rank Adaptation (ShareLoRA). By strategically deploying ShareLoRA across different layers and adapting it for the Query, Key, and Value components of self-attention layers, we achieve a substantial reduction in the number of training parameters and memory usage. Importantly, ShareLoRA not only maintains model performance but also exhibits robustness in both classification and generation tasks across a variety of models, including RoBERTa, GPT-2, LLaMA and LLaMA2. It demonstrates superior transfer learning capabilities compared to standard LoRA applications and mitigates overfitting by sharing weights across layers. Our findings affirm that ShareLoRA effectively boosts parameter efficiency while ensuring scalable and high-quality performance across different language model architectures. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069344933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069344933</sourcerecordid><originalsourceid>FETCH-proquest_journals_30693449333</originalsourceid><addsrcrecordid>eNqNjEsKwkAQRAdBUNQ7NLgOxJn4iTsRxUUEie6lNZ04UXt0Pnp9g3gAN1UP6lEt0ZVKjaJZImVHDJyr4ziWk6kcj1VX6P0FLWUmX8xhhxbv5MnCqiz1WRN7QC4gN6fgPGRoK2qSq4ANbE1BN1hrpsgH1lzBSyN87wrIzDvKka-wKPDh0WvDfdEu8eZo8OueGK5Xh-UmeljzDOT8sTbBcjMdVTxJVZKkSqn_rA_bckbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069344933</pqid></control><display><type>article</type><title>ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation</title><source>Free E- Journals</source><creator>Song, Yurun ; Zhao, Junchen ; Harris, Ian G ; Sangeetha Abdu Jyothi</creator><creatorcontrib>Song, Yurun ; Zhao, Junchen ; Harris, Ian G ; Sangeetha Abdu Jyothi</creatorcontrib><description>This study introduces an approach to optimize Parameter Efficient Fine Tuning (PEFT) for Pretrained Language Models (PLMs) by implementing a Shared Low Rank Adaptation (ShareLoRA). By strategically deploying ShareLoRA across different layers and adapting it for the Query, Key, and Value components of self-attention layers, we achieve a substantial reduction in the number of training parameters and memory usage. Importantly, ShareLoRA not only maintains model performance but also exhibits robustness in both classification and generation tasks across a variety of models, including RoBERTa, GPT-2, LLaMA and LLaMA2. It demonstrates superior transfer learning capabilities compared to standard LoRA applications and mitigates overfitting by sharing weights across layers. Our findings affirm that ShareLoRA effectively boosts parameter efficiency while ensuring scalable and high-quality performance across different language model architectures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Large language models ; Parameter robustness</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Song, Yurun</creatorcontrib><creatorcontrib>Zhao, Junchen</creatorcontrib><creatorcontrib>Harris, Ian G</creatorcontrib><creatorcontrib>Sangeetha Abdu Jyothi</creatorcontrib><title>ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation</title><title>arXiv.org</title><description>This study introduces an approach to optimize Parameter Efficient Fine Tuning (PEFT) for Pretrained Language Models (PLMs) by implementing a Shared Low Rank Adaptation (ShareLoRA). By strategically deploying ShareLoRA across different layers and adapting it for the Query, Key, and Value components of self-attention layers, we achieve a substantial reduction in the number of training parameters and memory usage. Importantly, ShareLoRA not only maintains model performance but also exhibits robustness in both classification and generation tasks across a variety of models, including RoBERTa, GPT-2, LLaMA and LLaMA2. It demonstrates superior transfer learning capabilities compared to standard LoRA applications and mitigates overfitting by sharing weights across layers. Our findings affirm that ShareLoRA effectively boosts parameter efficiency while ensuring scalable and high-quality performance across different language model architectures.</description><subject>Adaptation</subject><subject>Large language models</subject><subject>Parameter robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwkAQRAdBUNQ7NLgOxJn4iTsRxUUEie6lNZ04UXt0Pnp9g3gAN1UP6lEt0ZVKjaJZImVHDJyr4ziWk6kcj1VX6P0FLWUmX8xhhxbv5MnCqiz1WRN7QC4gN6fgPGRoK2qSq4ANbE1BN1hrpsgH1lzBSyN87wrIzDvKka-wKPDh0WvDfdEu8eZo8OueGK5Xh-UmeljzDOT8sTbBcjMdVTxJVZKkSqn_rA_bckbs</recordid><startdate>20240616</startdate><enddate>20240616</enddate><creator>Song, Yurun</creator><creator>Zhao, Junchen</creator><creator>Harris, Ian G</creator><creator>Sangeetha Abdu Jyothi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240616</creationdate><title>ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation</title><author>Song, Yurun ; Zhao, Junchen ; Harris, Ian G ; Sangeetha Abdu Jyothi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30693449333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Large language models</topic><topic>Parameter robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Yurun</creatorcontrib><creatorcontrib>Zhao, Junchen</creatorcontrib><creatorcontrib>Harris, Ian G</creatorcontrib><creatorcontrib>Sangeetha Abdu Jyothi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yurun</au><au>Zhao, Junchen</au><au>Harris, Ian G</au><au>Sangeetha Abdu Jyothi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation</atitle><jtitle>arXiv.org</jtitle><date>2024-06-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This study introduces an approach to optimize Parameter Efficient Fine Tuning (PEFT) for Pretrained Language Models (PLMs) by implementing a Shared Low Rank Adaptation (ShareLoRA). By strategically deploying ShareLoRA across different layers and adapting it for the Query, Key, and Value components of self-attention layers, we achieve a substantial reduction in the number of training parameters and memory usage. Importantly, ShareLoRA not only maintains model performance but also exhibits robustness in both classification and generation tasks across a variety of models, including RoBERTa, GPT-2, LLaMA and LLaMA2. It demonstrates superior transfer learning capabilities compared to standard LoRA applications and mitigates overfitting by sharing weights across layers. Our findings affirm that ShareLoRA effectively boosts parameter efficiency while ensuring scalable and high-quality performance across different language model architectures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3069344933 |
source | Free E- Journals |
subjects | Adaptation Large language models Parameter robustness |
title | ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ShareLoRA:%20Parameter%20Efficient%20and%20Robust%20Large%20Language%20Model%20Fine-tuning%20via%20Shared%20Low-Rank%20Adaptation&rft.jtitle=arXiv.org&rft.au=Song,%20Yurun&rft.date=2024-06-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3069344933%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069344933&rft_id=info:pmid/&rfr_iscdi=true |