Mathematics of 2-Dimensional Lattices

A periodic lattice in Euclidean space is the infinite set of all integer linear combinations of basis vectors. Any lattice can be generated by infinitely many different bases. This ambiguity was partially resolved, but standard reductions remain discontinuous under perturbations modelling atomic dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2024-06, Vol.24 (3), p.805-863
1. Verfasser: Kurlin, Vitaliy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue 3
container_start_page 805
container_title Foundations of computational mathematics
container_volume 24
creator Kurlin, Vitaliy
description A periodic lattice in Euclidean space is the infinite set of all integer linear combinations of basis vectors. Any lattice can be generated by infinitely many different bases. This ambiguity was partially resolved, but standard reductions remain discontinuous under perturbations modelling atomic displacements. This paper completes a continuous classification of 2-dimensional lattices up to Euclidean isometry (or congruence), rigid motion (without reflections), and similarity (with uniform scaling). The new homogeneous invariants allow easily computable metrics on lattices considered up to the equivalences above. The metrics up to rigid motion are especially non-trivial and settle all remaining questions on (dis)continuity of lattice bases. These metrics lead to real-valued chiral distances that continuously measure lattice deviations from higher-symmetry neighbours. The geometric methods extend the past work of Delone, Conway, and Sloane.
doi_str_mv 10.1007/s10208-022-09601-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069194428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069194428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8bc63dee0438350fc003d9904e286a095caf318d8d7e13bfc9781359783ec5523</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwBzhVQhwDdty0yRENBkhFXOAcZWkKndZ2JN2Bf09GEdy42Jb83rP1MXaOcIUA5XVEEKA4CMFBF4BcHbAZFig5kaLD37mUx-wkxjUASo35jF0-2fHdd3ZsXcyGJhP8tu18H9uht5ussmNa-HjKjhq7if7sp8_Z6_LuZfHAq-f7x8VNxR0VNHK1cgXV3kOejkpoHADVWkPuhSosaOlsQ6hqVZceadU4XSokmSp5J6WgObuYcrdh-Nj5OJr1sAvpk2gICo06z4VKKjGpXBhiDL4x29B2NnwaBLPHYSYcJuEw3zjM3kSTKSZx_-bDX_Q_ri_fO1_l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069194428</pqid></control><display><type>article</type><title>Mathematics of 2-Dimensional Lattices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kurlin, Vitaliy</creator><creatorcontrib>Kurlin, Vitaliy</creatorcontrib><description>A periodic lattice in Euclidean space is the infinite set of all integer linear combinations of basis vectors. Any lattice can be generated by infinitely many different bases. This ambiguity was partially resolved, but standard reductions remain discontinuous under perturbations modelling atomic displacements. This paper completes a continuous classification of 2-dimensional lattices up to Euclidean isometry (or congruence), rigid motion (without reflections), and similarity (with uniform scaling). The new homogeneous invariants allow easily computable metrics on lattices considered up to the equivalences above. The metrics up to rigid motion are especially non-trivial and settle all remaining questions on (dis)continuity of lattice bases. These metrics lead to real-valued chiral distances that continuously measure lattice deviations from higher-symmetry neighbours. The geometric methods extend the past work of Delone, Conway, and Sloane.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-022-09601-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Congruences ; Economics ; Euclidean geometry ; Lattices ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis</subject><ispartof>Foundations of computational mathematics, 2024-06, Vol.24 (3), p.805-863</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8bc63dee0438350fc003d9904e286a095caf318d8d7e13bfc9781359783ec5523</citedby><cites>FETCH-LOGICAL-c363t-8bc63dee0438350fc003d9904e286a095caf318d8d7e13bfc9781359783ec5523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-022-09601-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-022-09601-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kurlin, Vitaliy</creatorcontrib><title>Mathematics of 2-Dimensional Lattices</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>A periodic lattice in Euclidean space is the infinite set of all integer linear combinations of basis vectors. Any lattice can be generated by infinitely many different bases. This ambiguity was partially resolved, but standard reductions remain discontinuous under perturbations modelling atomic displacements. This paper completes a continuous classification of 2-dimensional lattices up to Euclidean isometry (or congruence), rigid motion (without reflections), and similarity (with uniform scaling). The new homogeneous invariants allow easily computable metrics on lattices considered up to the equivalences above. The metrics up to rigid motion are especially non-trivial and settle all remaining questions on (dis)continuity of lattice bases. These metrics lead to real-valued chiral distances that continuously measure lattice deviations from higher-symmetry neighbours. The geometric methods extend the past work of Delone, Conway, and Sloane.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Congruences</subject><subject>Economics</subject><subject>Euclidean geometry</subject><subject>Lattices</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFPwzAMhSMEEmPwBzhVQhwDdty0yRENBkhFXOAcZWkKndZ2JN2Bf09GEdy42Jb83rP1MXaOcIUA5XVEEKA4CMFBF4BcHbAZFig5kaLD37mUx-wkxjUASo35jF0-2fHdd3ZsXcyGJhP8tu18H9uht5ussmNa-HjKjhq7if7sp8_Z6_LuZfHAq-f7x8VNxR0VNHK1cgXV3kOejkpoHADVWkPuhSosaOlsQ6hqVZceadU4XSokmSp5J6WgObuYcrdh-Nj5OJr1sAvpk2gICo06z4VKKjGpXBhiDL4x29B2NnwaBLPHYSYcJuEw3zjM3kSTKSZx_-bDX_Q_ri_fO1_l</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kurlin, Vitaliy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240601</creationdate><title>Mathematics of 2-Dimensional Lattices</title><author>Kurlin, Vitaliy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8bc63dee0438350fc003d9904e286a095caf318d8d7e13bfc9781359783ec5523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Congruences</topic><topic>Economics</topic><topic>Euclidean geometry</topic><topic>Lattices</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurlin, Vitaliy</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurlin, Vitaliy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematics of 2-Dimensional Lattices</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>805</spage><epage>863</epage><pages>805-863</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>A periodic lattice in Euclidean space is the infinite set of all integer linear combinations of basis vectors. Any lattice can be generated by infinitely many different bases. This ambiguity was partially resolved, but standard reductions remain discontinuous under perturbations modelling atomic displacements. This paper completes a continuous classification of 2-dimensional lattices up to Euclidean isometry (or congruence), rigid motion (without reflections), and similarity (with uniform scaling). The new homogeneous invariants allow easily computable metrics on lattices considered up to the equivalences above. The metrics up to rigid motion are especially non-trivial and settle all remaining questions on (dis)continuity of lattice bases. These metrics lead to real-valued chiral distances that continuously measure lattice deviations from higher-symmetry neighbours. The geometric methods extend the past work of Delone, Conway, and Sloane.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-022-09601-8</doi><tpages>59</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2024-06, Vol.24 (3), p.805-863
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_journals_3069194428
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Computer Science
Congruences
Economics
Euclidean geometry
Lattices
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
title Mathematics of 2-Dimensional Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematics%20of%202-Dimensional%20Lattices&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Kurlin,%20Vitaliy&rft.date=2024-06-01&rft.volume=24&rft.issue=3&rft.spage=805&rft.epage=863&rft.pages=805-863&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-022-09601-8&rft_dat=%3Cproquest_cross%3E3069194428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069194428&rft_id=info:pmid/&rfr_iscdi=true