Activated charcoal-mediated non-contact carbothermal reduction of TiO2 for controlled synthesis of Magnéli phase titanium suboxides

Conventional Magnéli phase titanium suboxide syntheses often involve highly flammable H2 gas, extensive precursor pretreatment and yield unwanted TiC or TiOxCy byproducts. To overcome these limitations, this work introduces a low-cost, safe and scalable carbothermal reduction synthesis method that e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024, Vol.12 (24), p.14734-14743
Hauptverfasser: Ekanayake, S Amanda, Seeber, Aaron, Olorunyomi, Joseph F, Haoxin Mai, Mahasivam, Sanje, Shah, Daksh, Lu, Junlin, Wen, Xiaoming, Sampath, Nishanthini, Schumann, Simon L, Cox, Nicholas, Chen, Dehong, Caruso, Rachel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14743
container_issue 24
container_start_page 14734
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Ekanayake, S Amanda
Seeber, Aaron
Olorunyomi, Joseph F
Haoxin Mai
Mahasivam, Sanje
Shah, Daksh
Lu, Junlin
Wen, Xiaoming
Sampath, Nishanthini
Schumann, Simon L
Cox, Nicholas
Chen, Dehong
Caruso, Rachel A
description Conventional Magnéli phase titanium suboxide syntheses often involve highly flammable H2 gas, extensive precursor pretreatment and yield unwanted TiC or TiOxCy byproducts. To overcome these limitations, this work introduces a low-cost, safe and scalable carbothermal reduction synthesis method that eliminates the need for H2 or pretreatment and does not produce carbon-based titanium byproducts. Magnéli phases were generated without physical contact between the bulk organic that acted as the reductant and TiO2. Activated charcoal served as the reductant, reducing TiO2 under an Ar flow, thus limiting O2. The phase transition from anatase TiO2 to Magnéli phases was studied as a function of reduction time. Critical assessment of surface and bulk defects in the series of Magnéli titanium suboxides synthesised revealed a possible redistribution of defects within the lattice with time while maintaining a constant total defect content. Optical property analysis indicated that increasing oxygen deficiency led to increased inter-bandgap absorbance and prolonged lifetime of the photogenerated charge carriers. Oxygen deficiencies exhibited a direct correlation with the water evaporation rate when these Magnéli phase titanium suboxides were applied in solar steam generation. This was attributed to reduced thermal conductivities with increasing oxygen vacancies due to increased phonon scattering by planar defects. The defect-rich Magnéli suboxide sample consisting mainly of Ti6O11 with a remarkably low thermal conductivity of
doi_str_mv 10.1039/d4ta01202j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069171467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069171467</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5cf09bc279be8239d3169b9d3dfd515d0ecb292e4c8cd071f13d7e620b5f57c93</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWGo3PkHA9Wh-ZiaTZSn-QaWbui75dVKmSU0yontfxufwxZqqeDfncvnOOXABuMToGiPKb3SdBcIEke0JmBDUoIrVvD3937vuHMxS2qIyHUIt5xPwOVfZvYlsNFS9iCqIodoZ7X4uPvhKBZ-FylCJKEPuTdyJAUajx-ILHgYL125FoA0RHtEYhqE404cvbHLpCDyJF__9NTi470UyMLssvBt3MI0yvDtt0gU4s2JIZvanU_B8d7tePFTL1f3jYr6s9rijuWqURVwqwrg0HaFcU9xyWURb3eBGI6Mk4cTUqlMaMWwx1cy0BMnGNkxxOgVXv7n7GF5Hk_JmG8boS-WGlndghuuW0QMmSWZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069171467</pqid></control><display><type>article</type><title>Activated charcoal-mediated non-contact carbothermal reduction of TiO2 for controlled synthesis of Magnéli phase titanium suboxides</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ekanayake, S Amanda ; Seeber, Aaron ; Olorunyomi, Joseph F ; Haoxin Mai ; Mahasivam, Sanje ; Shah, Daksh ; Lu, Junlin ; Wen, Xiaoming ; Sampath, Nishanthini ; Schumann, Simon L ; Cox, Nicholas ; Chen, Dehong ; Caruso, Rachel A</creator><creatorcontrib>Ekanayake, S Amanda ; Seeber, Aaron ; Olorunyomi, Joseph F ; Haoxin Mai ; Mahasivam, Sanje ; Shah, Daksh ; Lu, Junlin ; Wen, Xiaoming ; Sampath, Nishanthini ; Schumann, Simon L ; Cox, Nicholas ; Chen, Dehong ; Caruso, Rachel A</creatorcontrib><description>Conventional Magnéli phase titanium suboxide syntheses often involve highly flammable H2 gas, extensive precursor pretreatment and yield unwanted TiC or TiOxCy byproducts. To overcome these limitations, this work introduces a low-cost, safe and scalable carbothermal reduction synthesis method that eliminates the need for H2 or pretreatment and does not produce carbon-based titanium byproducts. Magnéli phases were generated without physical contact between the bulk organic that acted as the reductant and TiO2. Activated charcoal served as the reductant, reducing TiO2 under an Ar flow, thus limiting O2. The phase transition from anatase TiO2 to Magnéli phases was studied as a function of reduction time. Critical assessment of surface and bulk defects in the series of Magnéli titanium suboxides synthesised revealed a possible redistribution of defects within the lattice with time while maintaining a constant total defect content. Optical property analysis indicated that increasing oxygen deficiency led to increased inter-bandgap absorbance and prolonged lifetime of the photogenerated charge carriers. Oxygen deficiencies exhibited a direct correlation with the water evaporation rate when these Magnéli phase titanium suboxides were applied in solar steam generation. This was attributed to reduced thermal conductivities with increasing oxygen vacancies due to increased phonon scattering by planar defects. The defect-rich Magnéli suboxide sample consisting mainly of Ti6O11 with a remarkably low thermal conductivity of &lt;0.032 W m−1 K−1 at 25 °C showed a solar energy conversion efficiency of 56% when applied in an aerogel for solar steam generation. This method provides flexibility for fabricating materials tailored for diverse applications requiring specific defect concentrations or thermoelectric performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta01202j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Activated charcoal ; Aerogels ; Anatase ; Byproducts ; Charcoal ; Current carriers ; Defects ; Energy conversion ; Energy conversion efficiency ; Evaporation ; Evaporation rate ; Flammability ; Flammable gases ; Optical properties ; Oxygen ; Phase transitions ; Pretreatment ; Reducing agents ; Solar energy ; Solar energy conversion ; Steam generation ; Synthesis ; Thermal conductivity ; Titanium ; Titanium dioxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024, Vol.12 (24), p.14734-14743</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>Ekanayake, S Amanda</creatorcontrib><creatorcontrib>Seeber, Aaron</creatorcontrib><creatorcontrib>Olorunyomi, Joseph F</creatorcontrib><creatorcontrib>Haoxin Mai</creatorcontrib><creatorcontrib>Mahasivam, Sanje</creatorcontrib><creatorcontrib>Shah, Daksh</creatorcontrib><creatorcontrib>Lu, Junlin</creatorcontrib><creatorcontrib>Wen, Xiaoming</creatorcontrib><creatorcontrib>Sampath, Nishanthini</creatorcontrib><creatorcontrib>Schumann, Simon L</creatorcontrib><creatorcontrib>Cox, Nicholas</creatorcontrib><creatorcontrib>Chen, Dehong</creatorcontrib><creatorcontrib>Caruso, Rachel A</creatorcontrib><title>Activated charcoal-mediated non-contact carbothermal reduction of TiO2 for controlled synthesis of Magnéli phase titanium suboxides</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Conventional Magnéli phase titanium suboxide syntheses often involve highly flammable H2 gas, extensive precursor pretreatment and yield unwanted TiC or TiOxCy byproducts. To overcome these limitations, this work introduces a low-cost, safe and scalable carbothermal reduction synthesis method that eliminates the need for H2 or pretreatment and does not produce carbon-based titanium byproducts. Magnéli phases were generated without physical contact between the bulk organic that acted as the reductant and TiO2. Activated charcoal served as the reductant, reducing TiO2 under an Ar flow, thus limiting O2. The phase transition from anatase TiO2 to Magnéli phases was studied as a function of reduction time. Critical assessment of surface and bulk defects in the series of Magnéli titanium suboxides synthesised revealed a possible redistribution of defects within the lattice with time while maintaining a constant total defect content. Optical property analysis indicated that increasing oxygen deficiency led to increased inter-bandgap absorbance and prolonged lifetime of the photogenerated charge carriers. Oxygen deficiencies exhibited a direct correlation with the water evaporation rate when these Magnéli phase titanium suboxides were applied in solar steam generation. This was attributed to reduced thermal conductivities with increasing oxygen vacancies due to increased phonon scattering by planar defects. The defect-rich Magnéli suboxide sample consisting mainly of Ti6O11 with a remarkably low thermal conductivity of &lt;0.032 W m−1 K−1 at 25 °C showed a solar energy conversion efficiency of 56% when applied in an aerogel for solar steam generation. This method provides flexibility for fabricating materials tailored for diverse applications requiring specific defect concentrations or thermoelectric performance.</description><subject>Activated carbon</subject><subject>Activated charcoal</subject><subject>Aerogels</subject><subject>Anatase</subject><subject>Byproducts</subject><subject>Charcoal</subject><subject>Current carriers</subject><subject>Defects</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Flammability</subject><subject>Flammable gases</subject><subject>Optical properties</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Pretreatment</subject><subject>Reducing agents</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Steam generation</subject><subject>Synthesis</subject><subject>Thermal conductivity</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWGo3PkHA9Wh-ZiaTZSn-QaWbui75dVKmSU0yontfxufwxZqqeDfncvnOOXABuMToGiPKb3SdBcIEke0JmBDUoIrVvD3937vuHMxS2qIyHUIt5xPwOVfZvYlsNFS9iCqIodoZ7X4uPvhKBZ-FylCJKEPuTdyJAUajx-ILHgYL125FoA0RHtEYhqE404cvbHLpCDyJF__9NTi470UyMLssvBt3MI0yvDtt0gU4s2JIZvanU_B8d7tePFTL1f3jYr6s9rijuWqURVwqwrg0HaFcU9xyWURb3eBGI6Mk4cTUqlMaMWwx1cy0BMnGNkxxOgVXv7n7GF5Hk_JmG8boS-WGlndghuuW0QMmSWZ0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ekanayake, S Amanda</creator><creator>Seeber, Aaron</creator><creator>Olorunyomi, Joseph F</creator><creator>Haoxin Mai</creator><creator>Mahasivam, Sanje</creator><creator>Shah, Daksh</creator><creator>Lu, Junlin</creator><creator>Wen, Xiaoming</creator><creator>Sampath, Nishanthini</creator><creator>Schumann, Simon L</creator><creator>Cox, Nicholas</creator><creator>Chen, Dehong</creator><creator>Caruso, Rachel A</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2024</creationdate><title>Activated charcoal-mediated non-contact carbothermal reduction of TiO2 for controlled synthesis of Magnéli phase titanium suboxides</title><author>Ekanayake, S Amanda ; Seeber, Aaron ; Olorunyomi, Joseph F ; Haoxin Mai ; Mahasivam, Sanje ; Shah, Daksh ; Lu, Junlin ; Wen, Xiaoming ; Sampath, Nishanthini ; Schumann, Simon L ; Cox, Nicholas ; Chen, Dehong ; Caruso, Rachel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5cf09bc279be8239d3169b9d3dfd515d0ecb292e4c8cd071f13d7e620b5f57c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Activated charcoal</topic><topic>Aerogels</topic><topic>Anatase</topic><topic>Byproducts</topic><topic>Charcoal</topic><topic>Current carriers</topic><topic>Defects</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Flammability</topic><topic>Flammable gases</topic><topic>Optical properties</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Pretreatment</topic><topic>Reducing agents</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Steam generation</topic><topic>Synthesis</topic><topic>Thermal conductivity</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekanayake, S Amanda</creatorcontrib><creatorcontrib>Seeber, Aaron</creatorcontrib><creatorcontrib>Olorunyomi, Joseph F</creatorcontrib><creatorcontrib>Haoxin Mai</creatorcontrib><creatorcontrib>Mahasivam, Sanje</creatorcontrib><creatorcontrib>Shah, Daksh</creatorcontrib><creatorcontrib>Lu, Junlin</creatorcontrib><creatorcontrib>Wen, Xiaoming</creatorcontrib><creatorcontrib>Sampath, Nishanthini</creatorcontrib><creatorcontrib>Schumann, Simon L</creatorcontrib><creatorcontrib>Cox, Nicholas</creatorcontrib><creatorcontrib>Chen, Dehong</creatorcontrib><creatorcontrib>Caruso, Rachel A</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekanayake, S Amanda</au><au>Seeber, Aaron</au><au>Olorunyomi, Joseph F</au><au>Haoxin Mai</au><au>Mahasivam, Sanje</au><au>Shah, Daksh</au><au>Lu, Junlin</au><au>Wen, Xiaoming</au><au>Sampath, Nishanthini</au><au>Schumann, Simon L</au><au>Cox, Nicholas</au><au>Chen, Dehong</au><au>Caruso, Rachel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activated charcoal-mediated non-contact carbothermal reduction of TiO2 for controlled synthesis of Magnéli phase titanium suboxides</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024</date><risdate>2024</risdate><volume>12</volume><issue>24</issue><spage>14734</spage><epage>14743</epage><pages>14734-14743</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Conventional Magnéli phase titanium suboxide syntheses often involve highly flammable H2 gas, extensive precursor pretreatment and yield unwanted TiC or TiOxCy byproducts. To overcome these limitations, this work introduces a low-cost, safe and scalable carbothermal reduction synthesis method that eliminates the need for H2 or pretreatment and does not produce carbon-based titanium byproducts. Magnéli phases were generated without physical contact between the bulk organic that acted as the reductant and TiO2. Activated charcoal served as the reductant, reducing TiO2 under an Ar flow, thus limiting O2. The phase transition from anatase TiO2 to Magnéli phases was studied as a function of reduction time. Critical assessment of surface and bulk defects in the series of Magnéli titanium suboxides synthesised revealed a possible redistribution of defects within the lattice with time while maintaining a constant total defect content. Optical property analysis indicated that increasing oxygen deficiency led to increased inter-bandgap absorbance and prolonged lifetime of the photogenerated charge carriers. Oxygen deficiencies exhibited a direct correlation with the water evaporation rate when these Magnéli phase titanium suboxides were applied in solar steam generation. This was attributed to reduced thermal conductivities with increasing oxygen vacancies due to increased phonon scattering by planar defects. The defect-rich Magnéli suboxide sample consisting mainly of Ti6O11 with a remarkably low thermal conductivity of &lt;0.032 W m−1 K−1 at 25 °C showed a solar energy conversion efficiency of 56% when applied in an aerogel for solar steam generation. This method provides flexibility for fabricating materials tailored for diverse applications requiring specific defect concentrations or thermoelectric performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta01202j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024, Vol.12 (24), p.14734-14743
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3069171467
source Royal Society Of Chemistry Journals 2008-
subjects Activated carbon
Activated charcoal
Aerogels
Anatase
Byproducts
Charcoal
Current carriers
Defects
Energy conversion
Energy conversion efficiency
Evaporation
Evaporation rate
Flammability
Flammable gases
Optical properties
Oxygen
Phase transitions
Pretreatment
Reducing agents
Solar energy
Solar energy conversion
Steam generation
Synthesis
Thermal conductivity
Titanium
Titanium dioxide
title Activated charcoal-mediated non-contact carbothermal reduction of TiO2 for controlled synthesis of Magnéli phase titanium suboxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activated%20charcoal-mediated%20non-contact%20carbothermal%20reduction%20of%20TiO2%20for%20controlled%20synthesis%20of%20Magn%C3%A9li%20phase%20titanium%20suboxides&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ekanayake,%20S%20Amanda&rft.date=2024&rft.volume=12&rft.issue=24&rft.spage=14734&rft.epage=14743&rft.pages=14734-14743&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta01202j&rft_dat=%3Cproquest%3E3069171467%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069171467&rft_id=info:pmid/&rfr_iscdi=true