Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells

High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2024-06, Vol.17 (12), p.4263-4272
Hauptverfasser: Bao, Wurigumula, Yao, Weiliang, Li, Yixuan, Sayahpour, Baharak, Han, Bing, Raghavendran, Ganesh, Shimizu, Ryosuke, Cronk, Ashley, Zhang, Minghao, Li, Weikang, Ying Shirley Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4272
container_issue 12
container_start_page 4263
container_title Energy & environmental science
container_volume 17
creator Bao, Wurigumula
Yao, Weiliang
Li, Yixuan
Sayahpour, Baharak
Han, Bing
Raghavendran, Ganesh
Shimizu, Ryosuke
Cronk, Ashley
Zhang, Minghao
Li, Weikang
Ying Shirley Meng
description High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO–graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al2O3) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO–Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology.
doi_str_mv 10.1039/d4ee00842a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069060965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069060965</sourcerecordid><originalsourceid>FETCH-LOGICAL-p149t-a259af8ee377573f4577bf14cfb1c52ddebbacf6ab15f1b35396134fd23c6c593</originalsourceid><addsrcrecordid>eNo1jbtOwzAARS0EEqWw8AWWmFP8dj2iikelQBdgrWzHblwZJ40dJDb-gT_kS4gETOee5R4ALjFaYETVdcOcQ2jJiD4CMyw5q7hE4vh_C0VOwVnOe4QEQVLNwOs65bBrS4YhlQ7GUNowvk3y7iYfPuBh1KkEH6wuoUuw87AOTwEt-GPCC75h359fu0H3bSgO-jFGaF2M-RyceB2zu_jjHLzc3T6vHqp6c79e3dRVj5kqlSZcab90jkrJJfWMS2k8ZtYbbDlpGmeMtl5og7nHhnKqBKbMN4RaYbmic3D1-9sP3WF0uWz33TikKbmlSCgkkBKc_gDTzlP6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069060965</pqid></control><display><type>article</type><title>Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Ying Shirley Meng</creator><creatorcontrib>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Ying Shirley Meng</creatorcontrib><description>High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO–graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al2O3) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO–Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (&gt;4.4 V) lithium battery technology.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee00842a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acidity ; Aluminum ; Aluminum oxide ; Cathodes ; Commercialization ; Cycles ; Decay ; Electrolytes ; Electrolytic cells ; Graphite ; High voltage ; High voltages ; Interphase ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Rechargeable batteries ; Voltage</subject><ispartof>Energy &amp; environmental science, 2024-06, Vol.17 (12), p.4263-4272</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bao, Wurigumula</creatorcontrib><creatorcontrib>Yao, Weiliang</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Sayahpour, Baharak</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Raghavendran, Ganesh</creatorcontrib><creatorcontrib>Shimizu, Ryosuke</creatorcontrib><creatorcontrib>Cronk, Ashley</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Li, Weikang</creatorcontrib><creatorcontrib>Ying Shirley Meng</creatorcontrib><title>Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells</title><title>Energy &amp; environmental science</title><description>High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO–graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al2O3) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO–Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (&gt;4.4 V) lithium battery technology.</description><subject>Acidity</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Cathodes</subject><subject>Commercialization</subject><subject>Cycles</subject><subject>Decay</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Graphite</subject><subject>High voltage</subject><subject>High voltages</subject><subject>Interphase</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Rechargeable batteries</subject><subject>Voltage</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1jbtOwzAARS0EEqWw8AWWmFP8dj2iikelQBdgrWzHblwZJ40dJDb-gT_kS4gETOee5R4ALjFaYETVdcOcQ2jJiD4CMyw5q7hE4vh_C0VOwVnOe4QEQVLNwOs65bBrS4YhlQ7GUNowvk3y7iYfPuBh1KkEH6wuoUuw87AOTwEt-GPCC75h359fu0H3bSgO-jFGaF2M-RyceB2zu_jjHLzc3T6vHqp6c79e3dRVj5kqlSZcab90jkrJJfWMS2k8ZtYbbDlpGmeMtl5og7nHhnKqBKbMN4RaYbmic3D1-9sP3WF0uWz33TikKbmlSCgkkBKc_gDTzlP6</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Bao, Wurigumula</creator><creator>Yao, Weiliang</creator><creator>Li, Yixuan</creator><creator>Sayahpour, Baharak</creator><creator>Han, Bing</creator><creator>Raghavendran, Ganesh</creator><creator>Shimizu, Ryosuke</creator><creator>Cronk, Ashley</creator><creator>Zhang, Minghao</creator><creator>Li, Weikang</creator><creator>Ying Shirley Meng</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20240618</creationdate><title>Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells</title><author>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Ying Shirley Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p149t-a259af8ee377573f4577bf14cfb1c52ddebbacf6ab15f1b35396134fd23c6c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidity</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Cathodes</topic><topic>Commercialization</topic><topic>Cycles</topic><topic>Decay</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Graphite</topic><topic>High voltage</topic><topic>High voltages</topic><topic>Interphase</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Rechargeable batteries</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Wurigumula</creatorcontrib><creatorcontrib>Yao, Weiliang</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Sayahpour, Baharak</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Raghavendran, Ganesh</creatorcontrib><creatorcontrib>Shimizu, Ryosuke</creatorcontrib><creatorcontrib>Cronk, Ashley</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Li, Weikang</creatorcontrib><creatorcontrib>Ying Shirley Meng</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Wurigumula</au><au>Yao, Weiliang</au><au>Li, Yixuan</au><au>Sayahpour, Baharak</au><au>Han, Bing</au><au>Raghavendran, Ganesh</au><au>Shimizu, Ryosuke</au><au>Cronk, Ashley</au><au>Zhang, Minghao</au><au>Li, Weikang</au><au>Ying Shirley Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2024-06-18</date><risdate>2024</risdate><volume>17</volume><issue>12</issue><spage>4263</spage><epage>4272</epage><pages>4263-4272</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO–graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al2O3) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO–Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (&gt;4.4 V) lithium battery technology.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee00842a</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-06, Vol.17 (12), p.4263-4272
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_3069060965
source Royal Society Of Chemistry Journals 2008-
subjects Acidity
Aluminum
Aluminum oxide
Cathodes
Commercialization
Cycles
Decay
Electrolytes
Electrolytic cells
Graphite
High voltage
High voltages
Interphase
Lithium
Lithium batteries
Lithium-ion batteries
Rechargeable batteries
Voltage
title Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20lithium%20inventory%20quantification%20of%20LiNi0.5Mn1.5O4%E2%80%93graphite%20full%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Bao,%20Wurigumula&rft.date=2024-06-18&rft.volume=17&rft.issue=12&rft.spage=4263&rft.epage=4272&rft.pages=4263-4272&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee00842a&rft_dat=%3Cproquest%3E3069060965%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069060965&rft_id=info:pmid/&rfr_iscdi=true