Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells
High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commer...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2024-06, Vol.17 (12), p.4263-4272 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4272 |
---|---|
container_issue | 12 |
container_start_page | 4263 |
container_title | Energy & environmental science |
container_volume | 17 |
creator | Bao, Wurigumula Yao, Weiliang Li, Yixuan Sayahpour, Baharak Han, Bing Raghavendran, Ganesh Shimizu, Ryosuke Cronk, Ashley Zhang, Minghao Li, Weikang Ying Shirley Meng |
description | High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO–graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al2O3) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO–Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology. |
doi_str_mv | 10.1039/d4ee00842a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069060965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069060965</sourcerecordid><originalsourceid>FETCH-LOGICAL-p149t-a259af8ee377573f4577bf14cfb1c52ddebbacf6ab15f1b35396134fd23c6c593</originalsourceid><addsrcrecordid>eNo1jbtOwzAARS0EEqWw8AWWmFP8dj2iikelQBdgrWzHblwZJ40dJDb-gT_kS4gETOee5R4ALjFaYETVdcOcQ2jJiD4CMyw5q7hE4vh_C0VOwVnOe4QEQVLNwOs65bBrS4YhlQ7GUNowvk3y7iYfPuBh1KkEH6wuoUuw87AOTwEt-GPCC75h359fu0H3bSgO-jFGaF2M-RyceB2zu_jjHLzc3T6vHqp6c79e3dRVj5kqlSZcab90jkrJJfWMS2k8ZtYbbDlpGmeMtl5og7nHhnKqBKbMN4RaYbmic3D1-9sP3WF0uWz33TikKbmlSCgkkBKc_gDTzlP6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069060965</pqid></control><display><type>article</type><title>Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Ying Shirley Meng</creator><creatorcontrib>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Ying Shirley Meng</creatorcontrib><description>High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO–graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al2O3) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO–Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee00842a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acidity ; Aluminum ; Aluminum oxide ; Cathodes ; Commercialization ; Cycles ; Decay ; Electrolytes ; Electrolytic cells ; Graphite ; High voltage ; High voltages ; Interphase ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Rechargeable batteries ; Voltage</subject><ispartof>Energy & environmental science, 2024-06, Vol.17 (12), p.4263-4272</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bao, Wurigumula</creatorcontrib><creatorcontrib>Yao, Weiliang</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Sayahpour, Baharak</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Raghavendran, Ganesh</creatorcontrib><creatorcontrib>Shimizu, Ryosuke</creatorcontrib><creatorcontrib>Cronk, Ashley</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Li, Weikang</creatorcontrib><creatorcontrib>Ying Shirley Meng</creatorcontrib><title>Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells</title><title>Energy & environmental science</title><description>High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO–graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al2O3) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO–Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology.</description><subject>Acidity</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Cathodes</subject><subject>Commercialization</subject><subject>Cycles</subject><subject>Decay</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Graphite</subject><subject>High voltage</subject><subject>High voltages</subject><subject>Interphase</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Rechargeable batteries</subject><subject>Voltage</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1jbtOwzAARS0EEqWw8AWWmFP8dj2iikelQBdgrWzHblwZJ40dJDb-gT_kS4gETOee5R4ALjFaYETVdcOcQ2jJiD4CMyw5q7hE4vh_C0VOwVnOe4QEQVLNwOs65bBrS4YhlQ7GUNowvk3y7iYfPuBh1KkEH6wuoUuw87AOTwEt-GPCC75h359fu0H3bSgO-jFGaF2M-RyceB2zu_jjHLzc3T6vHqp6c79e3dRVj5kqlSZcab90jkrJJfWMS2k8ZtYbbDlpGmeMtl5og7nHhnKqBKbMN4RaYbmic3D1-9sP3WF0uWz33TikKbmlSCgkkBKc_gDTzlP6</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Bao, Wurigumula</creator><creator>Yao, Weiliang</creator><creator>Li, Yixuan</creator><creator>Sayahpour, Baharak</creator><creator>Han, Bing</creator><creator>Raghavendran, Ganesh</creator><creator>Shimizu, Ryosuke</creator><creator>Cronk, Ashley</creator><creator>Zhang, Minghao</creator><creator>Li, Weikang</creator><creator>Ying Shirley Meng</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20240618</creationdate><title>Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells</title><author>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Ying Shirley Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p149t-a259af8ee377573f4577bf14cfb1c52ddebbacf6ab15f1b35396134fd23c6c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidity</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Cathodes</topic><topic>Commercialization</topic><topic>Cycles</topic><topic>Decay</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Graphite</topic><topic>High voltage</topic><topic>High voltages</topic><topic>Interphase</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Rechargeable batteries</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Wurigumula</creatorcontrib><creatorcontrib>Yao, Weiliang</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Sayahpour, Baharak</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Raghavendran, Ganesh</creatorcontrib><creatorcontrib>Shimizu, Ryosuke</creatorcontrib><creatorcontrib>Cronk, Ashley</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Li, Weikang</creatorcontrib><creatorcontrib>Ying Shirley Meng</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Wurigumula</au><au>Yao, Weiliang</au><au>Li, Yixuan</au><au>Sayahpour, Baharak</au><au>Han, Bing</au><au>Raghavendran, Ganesh</au><au>Shimizu, Ryosuke</au><au>Cronk, Ashley</au><au>Zhang, Minghao</au><au>Li, Weikang</au><au>Ying Shirley Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells</atitle><jtitle>Energy & environmental science</jtitle><date>2024-06-18</date><risdate>2024</risdate><volume>17</volume><issue>12</issue><spage>4263</spage><epage>4272</epage><pages>4263-4272</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO–graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al2O3) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO–Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee00842a</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2024-06, Vol.17 (12), p.4263-4272 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_3069060965 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Acidity Aluminum Aluminum oxide Cathodes Commercialization Cycles Decay Electrolytes Electrolytic cells Graphite High voltage High voltages Interphase Lithium Lithium batteries Lithium-ion batteries Rechargeable batteries Voltage |
title | Insights into lithium inventory quantification of LiNi0.5Mn1.5O4–graphite full cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20lithium%20inventory%20quantification%20of%20LiNi0.5Mn1.5O4%E2%80%93graphite%20full%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Bao,%20Wurigumula&rft.date=2024-06-18&rft.volume=17&rft.issue=12&rft.spage=4263&rft.epage=4272&rft.pages=4263-4272&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee00842a&rft_dat=%3Cproquest%3E3069060965%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069060965&rft_id=info:pmid/&rfr_iscdi=true |