Byzantine consensus is Θ(n2): the Dolev-Reischuk bound is tight even in partial synchrony

The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic (in the number of processes) communication complexity in the worst case: given a system with n processes and at most f < n / 3 failures, any solution to Byzantine consensus exchanges Ω ( n 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Distributed computing 2024-06, Vol.37 (2), p.89-119
Hauptverfasser: Civit, Pierre, Dzulfikar, Muhammad Ayaz, Gilbert, Seth, Gramoli, Vincent, Guerraoui, Rachid, Komatovic, Jovan, Vidigueira, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 89
container_title Distributed computing
container_volume 37
creator Civit, Pierre
Dzulfikar, Muhammad Ayaz
Gilbert, Seth
Gramoli, Vincent
Guerraoui, Rachid
Komatovic, Jovan
Vidigueira, Manuel
description The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic (in the number of processes) communication complexity in the worst case: given a system with n processes and at most f < n / 3 failures, any solution to Byzantine consensus exchanges Ω ( n 2 ) words, where a word contains a constant number of values and signatures. While it has been shown that the bound is tight in synchronous environments, it is still unknown whether a consensus protocol with quadratic communication complexity can be obtained in partial synchrony where the network alternates between (1) asynchronous periods, with unbounded message delays, and (2) synchronous periods, with δ -bounded message delays. Until now, the most efficient known solutions for Byzantine consensus in partially synchronous settings had cubic communication complexity (e.g., HotStuff, binary DBFT). This paper closes the existing gap by introducing SQuad , a partially synchronous Byzantine consensus protocol with O ( n 2 ) worst-case communication complexity. In addition, SQuad is optimally-resilient (tolerating up to f < n / 3 failures) and achieves O ( f · δ ) worst-case latency complexity. The key technical contribution underlying SQuad lies in the way we solve view synchronization , the problem of bringing all correct processes to the same view with a correct leader for sufficiently long. Concretely, we present RareSync , a view synchronization protocol with O ( n 2 ) communication complexity and O ( f · δ ) latency complexity, which we utilize in order to obtain SQuad .
doi_str_mv 10.1007/s00446-023-00458-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068973640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068973640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-268f6353c38f12a4269530cab231011d343b94e09cbc888ac29447b6fd496c213</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssYGFYfyo47CD8pQqISHYsLEc12lSilPspFX4Er6KbyIlSOxYzYx07h3pIHRI4ZQCJGcRQAhJgHHSbSNF1ltoQAVnpLvYNhoATRRhSQK7aC_GOQBwStkAvVy2H8bXpXfYVj46H5uIy4i_Po89OznHdeHwVbVwK_LoymiL5hVnVeOnG6YuZ0WN3cp5XHq8NKEuzQLH1tsiVL7dRzu5WUR38DuH6Pnm-ml8RyYPt_fjiwmxXPKaMKlyyUfccpVTZgST6YiDNRnjFCidcsGzVDhIbWaVUsayVIgkk_lUpNIyyofoqO9dhuq9cbHW86oJvnupOUiVJlwK6CjWUzZUMQaX62Uo30xoNQW9cah7h7pzqH8c6nUX4n0odrCfufBX_U_qG-aAdEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068973640</pqid></control><display><type>article</type><title>Byzantine consensus is Θ(n2): the Dolev-Reischuk bound is tight even in partial synchrony</title><source>SpringerLink Journals - AutoHoldings</source><creator>Civit, Pierre ; Dzulfikar, Muhammad Ayaz ; Gilbert, Seth ; Gramoli, Vincent ; Guerraoui, Rachid ; Komatovic, Jovan ; Vidigueira, Manuel</creator><creatorcontrib>Civit, Pierre ; Dzulfikar, Muhammad Ayaz ; Gilbert, Seth ; Gramoli, Vincent ; Guerraoui, Rachid ; Komatovic, Jovan ; Vidigueira, Manuel</creatorcontrib><description>The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic (in the number of processes) communication complexity in the worst case: given a system with n processes and at most f &lt; n / 3 failures, any solution to Byzantine consensus exchanges Ω ( n 2 ) words, where a word contains a constant number of values and signatures. While it has been shown that the bound is tight in synchronous environments, it is still unknown whether a consensus protocol with quadratic communication complexity can be obtained in partial synchrony where the network alternates between (1) asynchronous periods, with unbounded message delays, and (2) synchronous periods, with δ -bounded message delays. Until now, the most efficient known solutions for Byzantine consensus in partially synchronous settings had cubic communication complexity (e.g., HotStuff, binary DBFT). This paper closes the existing gap by introducing SQuad , a partially synchronous Byzantine consensus protocol with O ( n 2 ) worst-case communication complexity. In addition, SQuad is optimally-resilient (tolerating up to f &lt; n / 3 failures) and achieves O ( f · δ ) worst-case latency complexity. The key technical contribution underlying SQuad lies in the way we solve view synchronization , the problem of bringing all correct processes to the same view with a correct leader for sufficiently long. Concretely, we present RareSync , a view synchronization protocol with O ( n 2 ) communication complexity and O ( f · δ ) latency complexity, which we utilize in order to obtain SQuad .</description><identifier>ISSN: 0178-2770</identifier><identifier>EISSN: 1432-0452</identifier><identifier>DOI: 10.1007/s00446-023-00458-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Communication ; Complexity ; Computer Communication Networks ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Messages ; Software Engineering/Programming and Operating Systems ; Synchronism ; Theory of Computation</subject><ispartof>Distributed computing, 2024-06, Vol.37 (2), p.89-119</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-268f6353c38f12a4269530cab231011d343b94e09cbc888ac29447b6fd496c213</citedby><cites>FETCH-LOGICAL-c363t-268f6353c38f12a4269530cab231011d343b94e09cbc888ac29447b6fd496c213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00446-023-00458-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00446-023-00458-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Civit, Pierre</creatorcontrib><creatorcontrib>Dzulfikar, Muhammad Ayaz</creatorcontrib><creatorcontrib>Gilbert, Seth</creatorcontrib><creatorcontrib>Gramoli, Vincent</creatorcontrib><creatorcontrib>Guerraoui, Rachid</creatorcontrib><creatorcontrib>Komatovic, Jovan</creatorcontrib><creatorcontrib>Vidigueira, Manuel</creatorcontrib><title>Byzantine consensus is Θ(n2): the Dolev-Reischuk bound is tight even in partial synchrony</title><title>Distributed computing</title><addtitle>Distrib. Comput</addtitle><description>The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic (in the number of processes) communication complexity in the worst case: given a system with n processes and at most f &lt; n / 3 failures, any solution to Byzantine consensus exchanges Ω ( n 2 ) words, where a word contains a constant number of values and signatures. While it has been shown that the bound is tight in synchronous environments, it is still unknown whether a consensus protocol with quadratic communication complexity can be obtained in partial synchrony where the network alternates between (1) asynchronous periods, with unbounded message delays, and (2) synchronous periods, with δ -bounded message delays. Until now, the most efficient known solutions for Byzantine consensus in partially synchronous settings had cubic communication complexity (e.g., HotStuff, binary DBFT). This paper closes the existing gap by introducing SQuad , a partially synchronous Byzantine consensus protocol with O ( n 2 ) worst-case communication complexity. In addition, SQuad is optimally-resilient (tolerating up to f &lt; n / 3 failures) and achieves O ( f · δ ) worst-case latency complexity. The key technical contribution underlying SQuad lies in the way we solve view synchronization , the problem of bringing all correct processes to the same view with a correct leader for sufficiently long. Concretely, we present RareSync , a view synchronization protocol with O ( n 2 ) communication complexity and O ( f · δ ) latency complexity, which we utilize in order to obtain SQuad .</description><subject>Communication</subject><subject>Complexity</subject><subject>Computer Communication Networks</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Messages</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Synchronism</subject><subject>Theory of Computation</subject><issn>0178-2770</issn><issn>1432-0452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssYGFYfyo47CD8pQqISHYsLEc12lSilPspFX4Er6KbyIlSOxYzYx07h3pIHRI4ZQCJGcRQAhJgHHSbSNF1ltoQAVnpLvYNhoATRRhSQK7aC_GOQBwStkAvVy2H8bXpXfYVj46H5uIy4i_Po89OznHdeHwVbVwK_LoymiL5hVnVeOnG6YuZ0WN3cp5XHq8NKEuzQLH1tsiVL7dRzu5WUR38DuH6Pnm-ml8RyYPt_fjiwmxXPKaMKlyyUfccpVTZgST6YiDNRnjFCidcsGzVDhIbWaVUsayVIgkk_lUpNIyyofoqO9dhuq9cbHW86oJvnupOUiVJlwK6CjWUzZUMQaX62Uo30xoNQW9cah7h7pzqH8c6nUX4n0odrCfufBX_U_qG-aAdEQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Civit, Pierre</creator><creator>Dzulfikar, Muhammad Ayaz</creator><creator>Gilbert, Seth</creator><creator>Gramoli, Vincent</creator><creator>Guerraoui, Rachid</creator><creator>Komatovic, Jovan</creator><creator>Vidigueira, Manuel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>U9A</scope></search><sort><creationdate>20240601</creationdate><title>Byzantine consensus is Θ(n2): the Dolev-Reischuk bound is tight even in partial synchrony</title><author>Civit, Pierre ; Dzulfikar, Muhammad Ayaz ; Gilbert, Seth ; Gramoli, Vincent ; Guerraoui, Rachid ; Komatovic, Jovan ; Vidigueira, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-268f6353c38f12a4269530cab231011d343b94e09cbc888ac29447b6fd496c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Communication</topic><topic>Complexity</topic><topic>Computer Communication Networks</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Messages</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Synchronism</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Civit, Pierre</creatorcontrib><creatorcontrib>Dzulfikar, Muhammad Ayaz</creatorcontrib><creatorcontrib>Gilbert, Seth</creatorcontrib><creatorcontrib>Gramoli, Vincent</creatorcontrib><creatorcontrib>Guerraoui, Rachid</creatorcontrib><creatorcontrib>Komatovic, Jovan</creatorcontrib><creatorcontrib>Vidigueira, Manuel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Distributed computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Civit, Pierre</au><au>Dzulfikar, Muhammad Ayaz</au><au>Gilbert, Seth</au><au>Gramoli, Vincent</au><au>Guerraoui, Rachid</au><au>Komatovic, Jovan</au><au>Vidigueira, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Byzantine consensus is Θ(n2): the Dolev-Reischuk bound is tight even in partial synchrony</atitle><jtitle>Distributed computing</jtitle><stitle>Distrib. Comput</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>37</volume><issue>2</issue><spage>89</spage><epage>119</epage><pages>89-119</pages><issn>0178-2770</issn><eissn>1432-0452</eissn><abstract>The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic (in the number of processes) communication complexity in the worst case: given a system with n processes and at most f &lt; n / 3 failures, any solution to Byzantine consensus exchanges Ω ( n 2 ) words, where a word contains a constant number of values and signatures. While it has been shown that the bound is tight in synchronous environments, it is still unknown whether a consensus protocol with quadratic communication complexity can be obtained in partial synchrony where the network alternates between (1) asynchronous periods, with unbounded message delays, and (2) synchronous periods, with δ -bounded message delays. Until now, the most efficient known solutions for Byzantine consensus in partially synchronous settings had cubic communication complexity (e.g., HotStuff, binary DBFT). This paper closes the existing gap by introducing SQuad , a partially synchronous Byzantine consensus protocol with O ( n 2 ) worst-case communication complexity. In addition, SQuad is optimally-resilient (tolerating up to f &lt; n / 3 failures) and achieves O ( f · δ ) worst-case latency complexity. The key technical contribution underlying SQuad lies in the way we solve view synchronization , the problem of bringing all correct processes to the same view with a correct leader for sufficiently long. Concretely, we present RareSync , a view synchronization protocol with O ( n 2 ) communication complexity and O ( f · δ ) latency complexity, which we utilize in order to obtain SQuad .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00446-023-00458-w</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-2770
ispartof Distributed computing, 2024-06, Vol.37 (2), p.89-119
issn 0178-2770
1432-0452
language eng
recordid cdi_proquest_journals_3068973640
source SpringerLink Journals - AutoHoldings
subjects Communication
Complexity
Computer Communication Networks
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Messages
Software Engineering/Programming and Operating Systems
Synchronism
Theory of Computation
title Byzantine consensus is Θ(n2): the Dolev-Reischuk bound is tight even in partial synchrony
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Byzantine%20consensus%20is%20%CE%98(n2):%20the%20Dolev-Reischuk%20bound%20is%20tight%20even%20in%20partial%20synchrony&rft.jtitle=Distributed%20computing&rft.au=Civit,%20Pierre&rft.date=2024-06-01&rft.volume=37&rft.issue=2&rft.spage=89&rft.epage=119&rft.pages=89-119&rft.issn=0178-2770&rft.eissn=1432-0452&rft_id=info:doi/10.1007/s00446-023-00458-w&rft_dat=%3Cproquest_cross%3E3068973640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068973640&rft_id=info:pmid/&rfr_iscdi=true