Generalized non-coprime graphs of groups
Let G be a finite group with identity e and H ≠ { e } be a subgroup of G . The generalized non-coprime graph Γ G , H of G with respect to H is the simple undirected graph with G \ { e } as the vertex set and two distinct vertices x and y are adjacent if and only if gcd ( | x | , | y | ) ≠ 1 and eith...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2024-06, Vol.59 (4), p.807-825 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 825 |
---|---|
container_issue | 4 |
container_start_page | 807 |
container_title | Journal of algebraic combinatorics |
container_volume | 59 |
creator | Kathirvel, S. Anukumar Cameron, Peter J. Chelvam, T. Tamizh |
description | Let
G
be a finite group with identity
e
and
H
≠
{
e
}
be a subgroup of
G
. The generalized non-coprime graph
Γ
G
,
H
of
G
with respect to
H
is the simple undirected graph with
G
\
{
e
}
as the vertex set and two distinct vertices
x
and
y
are adjacent if and only if
gcd
(
|
x
|
,
|
y
|
)
≠
1
and either
x
∈
H
or
y
∈
H
, where |
x
| is the order of
x
∈
G
. In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, triangle-free, complete bipartite, complete, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg–Kegel graph. |
doi_str_mv | 10.1007/s10801-024-01310-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068445556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068445556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7afda3451265f2181de0ed003af923386721d1753bb092d0cafc8d77fe37235e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqHwB5gisbAY3rPj2B5RBQWpEgvMlhvbpVWJg90M8OtxCRIb07vh7t7pI-QS4QYB5G1GUIAUWEMBOQIVR6RCIRnVqNkxqUAzQbXS-pSc5bwFAK1QVOR64Xuf7G7z5V3dx552cUibd1-vkx3ech1DUXEc8jk5CXaX_cXvnZHXh_uX-SNdPi-e5ndL2jEJeyptcJY3AlkrAkOFzoN3ANwGzThXrWToUAq-WpVJDjobOuWkDJ5LxoXnM3I19Q4pfow-7802jqkvLw2HVjWNEKItLja5uhRzTj6Yw2qbPg2CORAxExFTiJgfIkaUEJ9CuZj7tU9_1f-kvgH7NGG2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068445556</pqid></control><display><type>article</type><title>Generalized non-coprime graphs of groups</title><source>Springer Nature - Complete Springer Journals</source><creator>Kathirvel, S. Anukumar ; Cameron, Peter J. ; Chelvam, T. Tamizh</creator><creatorcontrib>Kathirvel, S. Anukumar ; Cameron, Peter J. ; Chelvam, T. Tamizh</creatorcontrib><description>Let
G
be a finite group with identity
e
and
H
≠
{
e
}
be a subgroup of
G
. The generalized non-coprime graph
Γ
G
,
H
of
G
with respect to
H
is the simple undirected graph with
G
\
{
e
}
as the vertex set and two distinct vertices
x
and
y
are adjacent if and only if
gcd
(
|
x
|
,
|
y
|
)
≠
1
and either
x
∈
H
or
y
∈
H
, where |
x
| is the order of
x
∈
G
. In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, triangle-free, complete bipartite, complete, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg–Kegel graph.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-024-01310-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Combinatorics ; Completeness ; Computer Science ; Convex and Discrete Geometry ; Graph theory ; Graphs ; Group theory ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Subgroups ; Vertex sets</subject><ispartof>Journal of algebraic combinatorics, 2024-06, Vol.59 (4), p.807-825</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7afda3451265f2181de0ed003af923386721d1753bb092d0cafc8d77fe37235e3</cites><orcidid>0000-0002-1878-7847 ; 0000-0002-1286-1444 ; 0000-0003-3130-9505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-024-01310-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-024-01310-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kathirvel, S. Anukumar</creatorcontrib><creatorcontrib>Cameron, Peter J.</creatorcontrib><creatorcontrib>Chelvam, T. Tamizh</creatorcontrib><title>Generalized non-coprime graphs of groups</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>Let
G
be a finite group with identity
e
and
H
≠
{
e
}
be a subgroup of
G
. The generalized non-coprime graph
Γ
G
,
H
of
G
with respect to
H
is the simple undirected graph with
G
\
{
e
}
as the vertex set and two distinct vertices
x
and
y
are adjacent if and only if
gcd
(
|
x
|
,
|
y
|
)
≠
1
and either
x
∈
H
or
y
∈
H
, where |
x
| is the order of
x
∈
G
. In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, triangle-free, complete bipartite, complete, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg–Kegel graph.</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Completeness</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Subgroups</subject><subject>Vertex sets</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqHwB5gisbAY3rPj2B5RBQWpEgvMlhvbpVWJg90M8OtxCRIb07vh7t7pI-QS4QYB5G1GUIAUWEMBOQIVR6RCIRnVqNkxqUAzQbXS-pSc5bwFAK1QVOR64Xuf7G7z5V3dx552cUibd1-vkx3ech1DUXEc8jk5CXaX_cXvnZHXh_uX-SNdPi-e5ndL2jEJeyptcJY3AlkrAkOFzoN3ANwGzThXrWToUAq-WpVJDjobOuWkDJ5LxoXnM3I19Q4pfow-7802jqkvLw2HVjWNEKItLja5uhRzTj6Yw2qbPg2CORAxExFTiJgfIkaUEJ9CuZj7tU9_1f-kvgH7NGG2</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kathirvel, S. Anukumar</creator><creator>Cameron, Peter J.</creator><creator>Chelvam, T. Tamizh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1878-7847</orcidid><orcidid>https://orcid.org/0000-0002-1286-1444</orcidid><orcidid>https://orcid.org/0000-0003-3130-9505</orcidid></search><sort><creationdate>20240601</creationdate><title>Generalized non-coprime graphs of groups</title><author>Kathirvel, S. Anukumar ; Cameron, Peter J. ; Chelvam, T. Tamizh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7afda3451265f2181de0ed003af923386721d1753bb092d0cafc8d77fe37235e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Completeness</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Subgroups</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kathirvel, S. Anukumar</creatorcontrib><creatorcontrib>Cameron, Peter J.</creatorcontrib><creatorcontrib>Chelvam, T. Tamizh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kathirvel, S. Anukumar</au><au>Cameron, Peter J.</au><au>Chelvam, T. Tamizh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized non-coprime graphs of groups</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>59</volume><issue>4</issue><spage>807</spage><epage>825</epage><pages>807-825</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>Let
G
be a finite group with identity
e
and
H
≠
{
e
}
be a subgroup of
G
. The generalized non-coprime graph
Γ
G
,
H
of
G
with respect to
H
is the simple undirected graph with
G
\
{
e
}
as the vertex set and two distinct vertices
x
and
y
are adjacent if and only if
gcd
(
|
x
|
,
|
y
|
)
≠
1
and either
x
∈
H
or
y
∈
H
, where |
x
| is the order of
x
∈
G
. In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, triangle-free, complete bipartite, complete, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg–Kegel graph.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-024-01310-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1878-7847</orcidid><orcidid>https://orcid.org/0000-0002-1286-1444</orcidid><orcidid>https://orcid.org/0000-0003-3130-9505</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2024-06, Vol.59 (4), p.807-825 |
issn | 0925-9899 1572-9192 |
language | eng |
recordid | cdi_proquest_journals_3068445556 |
source | Springer Nature - Complete Springer Journals |
subjects | Apexes Combinatorics Completeness Computer Science Convex and Discrete Geometry Graph theory Graphs Group theory Group Theory and Generalizations Lattices Mathematics Mathematics and Statistics Order Ordered Algebraic Structures Subgroups Vertex sets |
title | Generalized non-coprime graphs of groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20non-coprime%20graphs%20of%20groups&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Kathirvel,%20S.%20Anukumar&rft.date=2024-06-01&rft.volume=59&rft.issue=4&rft.spage=807&rft.epage=825&rft.pages=807-825&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-024-01310-5&rft_dat=%3Cproquest_cross%3E3068445556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068445556&rft_id=info:pmid/&rfr_iscdi=true |