Generalized non-coprime graphs of groups

Let G be a finite group with identity e and H ≠ { e } be a subgroup of G . The generalized non-coprime graph Γ G , H of G with respect to H is the simple undirected graph with G \ { e } as the vertex set and two distinct vertices x and y are adjacent if and only if gcd ( | x | , | y | ) ≠ 1 and eith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2024-06, Vol.59 (4), p.807-825
Hauptverfasser: Kathirvel, S. Anukumar, Cameron, Peter J., Chelvam, T. Tamizh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 4
container_start_page 807
container_title Journal of algebraic combinatorics
container_volume 59
creator Kathirvel, S. Anukumar
Cameron, Peter J.
Chelvam, T. Tamizh
description Let G be a finite group with identity e and H ≠ { e } be a subgroup of G . The generalized non-coprime graph Γ G , H of G with respect to H is the simple undirected graph with G \ { e } as the vertex set and two distinct vertices x and y are adjacent if and only if gcd ( | x | , | y | ) ≠ 1 and either x ∈ H or y ∈ H , where | x | is the order of x ∈ G . In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, triangle-free, complete bipartite, complete, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg–Kegel graph.
doi_str_mv 10.1007/s10801-024-01310-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068445556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068445556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7afda3451265f2181de0ed003af923386721d1753bb092d0cafc8d77fe37235e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqHwB5gisbAY3rPj2B5RBQWpEgvMlhvbpVWJg90M8OtxCRIb07vh7t7pI-QS4QYB5G1GUIAUWEMBOQIVR6RCIRnVqNkxqUAzQbXS-pSc5bwFAK1QVOR64Xuf7G7z5V3dx552cUibd1-vkx3ech1DUXEc8jk5CXaX_cXvnZHXh_uX-SNdPi-e5ndL2jEJeyptcJY3AlkrAkOFzoN3ANwGzThXrWToUAq-WpVJDjobOuWkDJ5LxoXnM3I19Q4pfow-7802jqkvLw2HVjWNEKItLja5uhRzTj6Yw2qbPg2CORAxExFTiJgfIkaUEJ9CuZj7tU9_1f-kvgH7NGG2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068445556</pqid></control><display><type>article</type><title>Generalized non-coprime graphs of groups</title><source>Springer Nature - Complete Springer Journals</source><creator>Kathirvel, S. Anukumar ; Cameron, Peter J. ; Chelvam, T. Tamizh</creator><creatorcontrib>Kathirvel, S. Anukumar ; Cameron, Peter J. ; Chelvam, T. Tamizh</creatorcontrib><description>Let G be a finite group with identity e and H ≠ { e } be a subgroup of G . The generalized non-coprime graph Γ G , H of G with respect to H is the simple undirected graph with G \ { e } as the vertex set and two distinct vertices x and y are adjacent if and only if gcd ( | x | , | y | ) ≠ 1 and either x ∈ H or y ∈ H , where | x | is the order of x ∈ G . In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, triangle-free, complete bipartite, complete, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg–Kegel graph.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-024-01310-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Combinatorics ; Completeness ; Computer Science ; Convex and Discrete Geometry ; Graph theory ; Graphs ; Group theory ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Subgroups ; Vertex sets</subject><ispartof>Journal of algebraic combinatorics, 2024-06, Vol.59 (4), p.807-825</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7afda3451265f2181de0ed003af923386721d1753bb092d0cafc8d77fe37235e3</cites><orcidid>0000-0002-1878-7847 ; 0000-0002-1286-1444 ; 0000-0003-3130-9505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-024-01310-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-024-01310-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kathirvel, S. Anukumar</creatorcontrib><creatorcontrib>Cameron, Peter J.</creatorcontrib><creatorcontrib>Chelvam, T. Tamizh</creatorcontrib><title>Generalized non-coprime graphs of groups</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>Let G be a finite group with identity e and H ≠ { e } be a subgroup of G . The generalized non-coprime graph Γ G , H of G with respect to H is the simple undirected graph with G \ { e } as the vertex set and two distinct vertices x and y are adjacent if and only if gcd ( | x | , | y | ) ≠ 1 and either x ∈ H or y ∈ H , where | x | is the order of x ∈ G . In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, triangle-free, complete bipartite, complete, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg–Kegel graph.</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Completeness</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Subgroups</subject><subject>Vertex sets</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqHwB5gisbAY3rPj2B5RBQWpEgvMlhvbpVWJg90M8OtxCRIb07vh7t7pI-QS4QYB5G1GUIAUWEMBOQIVR6RCIRnVqNkxqUAzQbXS-pSc5bwFAK1QVOR64Xuf7G7z5V3dx552cUibd1-vkx3ech1DUXEc8jk5CXaX_cXvnZHXh_uX-SNdPi-e5ndL2jEJeyptcJY3AlkrAkOFzoN3ANwGzThXrWToUAq-WpVJDjobOuWkDJ5LxoXnM3I19Q4pfow-7802jqkvLw2HVjWNEKItLja5uhRzTj6Yw2qbPg2CORAxExFTiJgfIkaUEJ9CuZj7tU9_1f-kvgH7NGG2</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kathirvel, S. Anukumar</creator><creator>Cameron, Peter J.</creator><creator>Chelvam, T. Tamizh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1878-7847</orcidid><orcidid>https://orcid.org/0000-0002-1286-1444</orcidid><orcidid>https://orcid.org/0000-0003-3130-9505</orcidid></search><sort><creationdate>20240601</creationdate><title>Generalized non-coprime graphs of groups</title><author>Kathirvel, S. Anukumar ; Cameron, Peter J. ; Chelvam, T. Tamizh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7afda3451265f2181de0ed003af923386721d1753bb092d0cafc8d77fe37235e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Completeness</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Subgroups</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kathirvel, S. Anukumar</creatorcontrib><creatorcontrib>Cameron, Peter J.</creatorcontrib><creatorcontrib>Chelvam, T. Tamizh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kathirvel, S. Anukumar</au><au>Cameron, Peter J.</au><au>Chelvam, T. Tamizh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized non-coprime graphs of groups</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>59</volume><issue>4</issue><spage>807</spage><epage>825</epage><pages>807-825</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>Let G be a finite group with identity e and H ≠ { e } be a subgroup of G . The generalized non-coprime graph Γ G , H of G with respect to H is the simple undirected graph with G \ { e } as the vertex set and two distinct vertices x and y are adjacent if and only if gcd ( | x | , | y | ) ≠ 1 and either x ∈ H or y ∈ H , where | x | is the order of x ∈ G . In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, triangle-free, complete bipartite, complete, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg–Kegel graph.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-024-01310-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1878-7847</orcidid><orcidid>https://orcid.org/0000-0002-1286-1444</orcidid><orcidid>https://orcid.org/0000-0003-3130-9505</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2024-06, Vol.59 (4), p.807-825
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_3068445556
source Springer Nature - Complete Springer Journals
subjects Apexes
Combinatorics
Completeness
Computer Science
Convex and Discrete Geometry
Graph theory
Graphs
Group theory
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Subgroups
Vertex sets
title Generalized non-coprime graphs of groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20non-coprime%20graphs%20of%20groups&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Kathirvel,%20S.%20Anukumar&rft.date=2024-06-01&rft.volume=59&rft.issue=4&rft.spage=807&rft.epage=825&rft.pages=807-825&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-024-01310-5&rft_dat=%3Cproquest_cross%3E3068445556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068445556&rft_id=info:pmid/&rfr_iscdi=true