MSSTN: a multi-scale spatio-temporal network for traffic flow prediction

Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to explo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2024-07, Vol.15 (7), p.2827-2841
Hauptverfasser: Song, Yun, Bai, Xinke, Fan, Wendong, Deng, Zelin, Jiang, Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2841
container_issue 7
container_start_page 2827
container_title International journal of machine learning and cybernetics
container_volume 15
creator Song, Yun
Bai, Xinke
Fan, Wendong
Deng, Zelin
Jiang, Cong
description Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to exploit complicated local and nonlocal correlations in traffic flow for traffic prediction. In the proposed method, a convolutional neural network, a self-attention module, and a graph convolution network (GCN) are integrated to extract and fuse multi-scale temporal and spatial features to make predictions. Specifically, a self-adaption temporal convolutional neural network (SATCN) is first employed to extract local temporal correlations between adjacent time slices. Furthermore, a self-attention module is applied to capture the long-range nonlocal traffic dependence in the temporal dimension and fuse it with the local features. Then, a graph convolutional network module is utilized to learn spatio-temporal features of the traffic flow to exploit the mutual dependencies between traffic nodes. Experimental results on public traffic datasets demonstrate the superiority of our method over compared state-of-the-art methods. The ablation experiments confirm the effectiveness of each component of the proposed model. Our implementation on Pytorch is publicly available at https://github.com/csust-sonie/MSSTN .
doi_str_mv 10.1007/s13042-023-02067-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068445408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068255465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-bf0a54bbbd3bfdd5a2a876e38fafb9c2e8b2abab3fb84bb2bb9329ba25f653253</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWLQv4CrgOpqfSSbjTopaoeqiFdyFZCaRqdPJmKQU397UEd3phXCzON934QBwRvAFwbi8jIThgiJMWX5YlIgegAmRQiKJ5cvhz78kx2Aa4xrnEZgxTCdg_rBcrh6voIabbZdaFGvdWRgHnVqPkt0MPugO9jbtfHiDzgeYgnauraHr_A4OwTZtndn-FBw53UU7_d4n4Pn2ZjWbo8XT3f3seoFqVpGEjMOaF8aYhhnXNFxTLUthmXTamaqmVhqqjTbMGZkxakzFaGU05U5wRjk7Aedj7xD8-9bGpNZ-G_p8UjEsZFHwAsv_KMp5IfZddKTq4GMM1qkhtBsdPhTBaq9WjWpVVqu-1CqaQ2wMxQz3rzb8Vv-R-gSuPXvL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068255465</pqid></control><display><type>article</type><title>MSSTN: a multi-scale spatio-temporal network for traffic flow prediction</title><source>SpringerLink Journals</source><creator>Song, Yun ; Bai, Xinke ; Fan, Wendong ; Deng, Zelin ; Jiang, Cong</creator><creatorcontrib>Song, Yun ; Bai, Xinke ; Fan, Wendong ; Deng, Zelin ; Jiang, Cong</creatorcontrib><description>Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to exploit complicated local and nonlocal correlations in traffic flow for traffic prediction. In the proposed method, a convolutional neural network, a self-attention module, and a graph convolution network (GCN) are integrated to extract and fuse multi-scale temporal and spatial features to make predictions. Specifically, a self-adaption temporal convolutional neural network (SATCN) is first employed to extract local temporal correlations between adjacent time slices. Furthermore, a self-attention module is applied to capture the long-range nonlocal traffic dependence in the temporal dimension and fuse it with the local features. Then, a graph convolutional network module is utilized to learn spatio-temporal features of the traffic flow to exploit the mutual dependencies between traffic nodes. Experimental results on public traffic datasets demonstrate the superiority of our method over compared state-of-the-art methods. The ablation experiments confirm the effectiveness of each component of the proposed model. Our implementation on Pytorch is publicly available at https://github.com/csust-sonie/MSSTN .</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-023-02067-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Computational Intelligence ; Control ; Correlation ; Deep learning ; Engineering ; Feature extraction ; Machine learning ; Mechatronics ; Modules ; Neural networks ; Nodes ; Original Article ; Pattern Recognition ; Robotics ; Systems Biology ; Traffic control ; Traffic flow</subject><ispartof>International journal of machine learning and cybernetics, 2024-07, Vol.15 (7), p.2827-2841</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-bf0a54bbbd3bfdd5a2a876e38fafb9c2e8b2abab3fb84bb2bb9329ba25f653253</citedby><cites>FETCH-LOGICAL-c391t-bf0a54bbbd3bfdd5a2a876e38fafb9c2e8b2abab3fb84bb2bb9329ba25f653253</cites><orcidid>0000-0002-8518-793X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-023-02067-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13042-023-02067-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Song, Yun</creatorcontrib><creatorcontrib>Bai, Xinke</creatorcontrib><creatorcontrib>Fan, Wendong</creatorcontrib><creatorcontrib>Deng, Zelin</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><title>MSSTN: a multi-scale spatio-temporal network for traffic flow prediction</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to exploit complicated local and nonlocal correlations in traffic flow for traffic prediction. In the proposed method, a convolutional neural network, a self-attention module, and a graph convolution network (GCN) are integrated to extract and fuse multi-scale temporal and spatial features to make predictions. Specifically, a self-adaption temporal convolutional neural network (SATCN) is first employed to extract local temporal correlations between adjacent time slices. Furthermore, a self-attention module is applied to capture the long-range nonlocal traffic dependence in the temporal dimension and fuse it with the local features. Then, a graph convolutional network module is utilized to learn spatio-temporal features of the traffic flow to exploit the mutual dependencies between traffic nodes. Experimental results on public traffic datasets demonstrate the superiority of our method over compared state-of-the-art methods. The ablation experiments confirm the effectiveness of each component of the proposed model. Our implementation on Pytorch is publicly available at https://github.com/csust-sonie/MSSTN .</description><subject>Ablation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Systems Biology</subject><subject>Traffic control</subject><subject>Traffic flow</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURoMoWLQv4CrgOpqfSSbjTopaoeqiFdyFZCaRqdPJmKQU397UEd3phXCzON934QBwRvAFwbi8jIThgiJMWX5YlIgegAmRQiKJ5cvhz78kx2Aa4xrnEZgxTCdg_rBcrh6voIabbZdaFGvdWRgHnVqPkt0MPugO9jbtfHiDzgeYgnauraHr_A4OwTZtndn-FBw53UU7_d4n4Pn2ZjWbo8XT3f3seoFqVpGEjMOaF8aYhhnXNFxTLUthmXTamaqmVhqqjTbMGZkxakzFaGU05U5wRjk7Aedj7xD8-9bGpNZ-G_p8UjEsZFHwAsv_KMp5IfZddKTq4GMM1qkhtBsdPhTBaq9WjWpVVqu-1CqaQ2wMxQz3rzb8Vv-R-gSuPXvL</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Song, Yun</creator><creator>Bai, Xinke</creator><creator>Fan, Wendong</creator><creator>Deng, Zelin</creator><creator>Jiang, Cong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-8518-793X</orcidid></search><sort><creationdate>20240701</creationdate><title>MSSTN: a multi-scale spatio-temporal network for traffic flow prediction</title><author>Song, Yun ; Bai, Xinke ; Fan, Wendong ; Deng, Zelin ; Jiang, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-bf0a54bbbd3bfdd5a2a876e38fafb9c2e8b2abab3fb84bb2bb9329ba25f653253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Systems Biology</topic><topic>Traffic control</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yun</creatorcontrib><creatorcontrib>Bai, Xinke</creatorcontrib><creatorcontrib>Fan, Wendong</creatorcontrib><creatorcontrib>Deng, Zelin</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yun</au><au>Bai, Xinke</au><au>Fan, Wendong</au><au>Deng, Zelin</au><au>Jiang, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSSTN: a multi-scale spatio-temporal network for traffic flow prediction</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>15</volume><issue>7</issue><spage>2827</spage><epage>2841</epage><pages>2827-2841</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to exploit complicated local and nonlocal correlations in traffic flow for traffic prediction. In the proposed method, a convolutional neural network, a self-attention module, and a graph convolution network (GCN) are integrated to extract and fuse multi-scale temporal and spatial features to make predictions. Specifically, a self-adaption temporal convolutional neural network (SATCN) is first employed to extract local temporal correlations between adjacent time slices. Furthermore, a self-attention module is applied to capture the long-range nonlocal traffic dependence in the temporal dimension and fuse it with the local features. Then, a graph convolutional network module is utilized to learn spatio-temporal features of the traffic flow to exploit the mutual dependencies between traffic nodes. Experimental results on public traffic datasets demonstrate the superiority of our method over compared state-of-the-art methods. The ablation experiments confirm the effectiveness of each component of the proposed model. Our implementation on Pytorch is publicly available at https://github.com/csust-sonie/MSSTN .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-023-02067-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8518-793X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2024-07, Vol.15 (7), p.2827-2841
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_3068445408
source SpringerLink Journals
subjects Ablation
Artificial Intelligence
Artificial neural networks
Complex Systems
Computational Intelligence
Control
Correlation
Deep learning
Engineering
Feature extraction
Machine learning
Mechatronics
Modules
Neural networks
Nodes
Original Article
Pattern Recognition
Robotics
Systems Biology
Traffic control
Traffic flow
title MSSTN: a multi-scale spatio-temporal network for traffic flow prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSSTN:%20a%20multi-scale%20spatio-temporal%20network%20for%20traffic%20flow%20prediction&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Song,%20Yun&rft.date=2024-07-01&rft.volume=15&rft.issue=7&rft.spage=2827&rft.epage=2841&rft.pages=2827-2841&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-023-02067-2&rft_dat=%3Cproquest_cross%3E3068255465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068255465&rft_id=info:pmid/&rfr_iscdi=true