MSSTN: a multi-scale spatio-temporal network for traffic flow prediction
Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to explo...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2024-07, Vol.15 (7), p.2827-2841 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2841 |
---|---|
container_issue | 7 |
container_start_page | 2827 |
container_title | International journal of machine learning and cybernetics |
container_volume | 15 |
creator | Song, Yun Bai, Xinke Fan, Wendong Deng, Zelin Jiang, Cong |
description | Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to exploit complicated local and nonlocal correlations in traffic flow for traffic prediction. In the proposed method, a convolutional neural network, a self-attention module, and a graph convolution network (GCN) are integrated to extract and fuse multi-scale temporal and spatial features to make predictions. Specifically, a self-adaption temporal convolutional neural network (SATCN) is first employed to extract local temporal correlations between adjacent time slices. Furthermore, a self-attention module is applied to capture the long-range nonlocal traffic dependence in the temporal dimension and fuse it with the local features. Then, a graph convolutional network module is utilized to learn spatio-temporal features of the traffic flow to exploit the mutual dependencies between traffic nodes. Experimental results on public traffic datasets demonstrate the superiority of our method over compared state-of-the-art methods. The ablation experiments confirm the effectiveness of each component of the proposed model. Our implementation on Pytorch is publicly available at
https://github.com/csust-sonie/MSSTN
. |
doi_str_mv | 10.1007/s13042-023-02067-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068445408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068255465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-bf0a54bbbd3bfdd5a2a876e38fafb9c2e8b2abab3fb84bb2bb9329ba25f653253</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWLQv4CrgOpqfSSbjTopaoeqiFdyFZCaRqdPJmKQU397UEd3phXCzON934QBwRvAFwbi8jIThgiJMWX5YlIgegAmRQiKJ5cvhz78kx2Aa4xrnEZgxTCdg_rBcrh6voIabbZdaFGvdWRgHnVqPkt0MPugO9jbtfHiDzgeYgnauraHr_A4OwTZtndn-FBw53UU7_d4n4Pn2ZjWbo8XT3f3seoFqVpGEjMOaF8aYhhnXNFxTLUthmXTamaqmVhqqjTbMGZkxakzFaGU05U5wRjk7Aedj7xD8-9bGpNZ-G_p8UjEsZFHwAsv_KMp5IfZddKTq4GMM1qkhtBsdPhTBaq9WjWpVVqu-1CqaQ2wMxQz3rzb8Vv-R-gSuPXvL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068255465</pqid></control><display><type>article</type><title>MSSTN: a multi-scale spatio-temporal network for traffic flow prediction</title><source>SpringerLink Journals</source><creator>Song, Yun ; Bai, Xinke ; Fan, Wendong ; Deng, Zelin ; Jiang, Cong</creator><creatorcontrib>Song, Yun ; Bai, Xinke ; Fan, Wendong ; Deng, Zelin ; Jiang, Cong</creatorcontrib><description>Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to exploit complicated local and nonlocal correlations in traffic flow for traffic prediction. In the proposed method, a convolutional neural network, a self-attention module, and a graph convolution network (GCN) are integrated to extract and fuse multi-scale temporal and spatial features to make predictions. Specifically, a self-adaption temporal convolutional neural network (SATCN) is first employed to extract local temporal correlations between adjacent time slices. Furthermore, a self-attention module is applied to capture the long-range nonlocal traffic dependence in the temporal dimension and fuse it with the local features. Then, a graph convolutional network module is utilized to learn spatio-temporal features of the traffic flow to exploit the mutual dependencies between traffic nodes. Experimental results on public traffic datasets demonstrate the superiority of our method over compared state-of-the-art methods. The ablation experiments confirm the effectiveness of each component of the proposed model. Our implementation on Pytorch is publicly available at
https://github.com/csust-sonie/MSSTN
.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-023-02067-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Computational Intelligence ; Control ; Correlation ; Deep learning ; Engineering ; Feature extraction ; Machine learning ; Mechatronics ; Modules ; Neural networks ; Nodes ; Original Article ; Pattern Recognition ; Robotics ; Systems Biology ; Traffic control ; Traffic flow</subject><ispartof>International journal of machine learning and cybernetics, 2024-07, Vol.15 (7), p.2827-2841</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-bf0a54bbbd3bfdd5a2a876e38fafb9c2e8b2abab3fb84bb2bb9329ba25f653253</citedby><cites>FETCH-LOGICAL-c391t-bf0a54bbbd3bfdd5a2a876e38fafb9c2e8b2abab3fb84bb2bb9329ba25f653253</cites><orcidid>0000-0002-8518-793X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-023-02067-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13042-023-02067-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Song, Yun</creatorcontrib><creatorcontrib>Bai, Xinke</creatorcontrib><creatorcontrib>Fan, Wendong</creatorcontrib><creatorcontrib>Deng, Zelin</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><title>MSSTN: a multi-scale spatio-temporal network for traffic flow prediction</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to exploit complicated local and nonlocal correlations in traffic flow for traffic prediction. In the proposed method, a convolutional neural network, a self-attention module, and a graph convolution network (GCN) are integrated to extract and fuse multi-scale temporal and spatial features to make predictions. Specifically, a self-adaption temporal convolutional neural network (SATCN) is first employed to extract local temporal correlations between adjacent time slices. Furthermore, a self-attention module is applied to capture the long-range nonlocal traffic dependence in the temporal dimension and fuse it with the local features. Then, a graph convolutional network module is utilized to learn spatio-temporal features of the traffic flow to exploit the mutual dependencies between traffic nodes. Experimental results on public traffic datasets demonstrate the superiority of our method over compared state-of-the-art methods. The ablation experiments confirm the effectiveness of each component of the proposed model. Our implementation on Pytorch is publicly available at
https://github.com/csust-sonie/MSSTN
.</description><subject>Ablation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Systems Biology</subject><subject>Traffic control</subject><subject>Traffic flow</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURoMoWLQv4CrgOpqfSSbjTopaoeqiFdyFZCaRqdPJmKQU397UEd3phXCzON934QBwRvAFwbi8jIThgiJMWX5YlIgegAmRQiKJ5cvhz78kx2Aa4xrnEZgxTCdg_rBcrh6voIabbZdaFGvdWRgHnVqPkt0MPugO9jbtfHiDzgeYgnauraHr_A4OwTZtndn-FBw53UU7_d4n4Pn2ZjWbo8XT3f3seoFqVpGEjMOaF8aYhhnXNFxTLUthmXTamaqmVhqqjTbMGZkxakzFaGU05U5wRjk7Aedj7xD8-9bGpNZ-G_p8UjEsZFHwAsv_KMp5IfZddKTq4GMM1qkhtBsdPhTBaq9WjWpVVqu-1CqaQ2wMxQz3rzb8Vv-R-gSuPXvL</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Song, Yun</creator><creator>Bai, Xinke</creator><creator>Fan, Wendong</creator><creator>Deng, Zelin</creator><creator>Jiang, Cong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-8518-793X</orcidid></search><sort><creationdate>20240701</creationdate><title>MSSTN: a multi-scale spatio-temporal network for traffic flow prediction</title><author>Song, Yun ; Bai, Xinke ; Fan, Wendong ; Deng, Zelin ; Jiang, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-bf0a54bbbd3bfdd5a2a876e38fafb9c2e8b2abab3fb84bb2bb9329ba25f653253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Systems Biology</topic><topic>Traffic control</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yun</creatorcontrib><creatorcontrib>Bai, Xinke</creatorcontrib><creatorcontrib>Fan, Wendong</creatorcontrib><creatorcontrib>Deng, Zelin</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yun</au><au>Bai, Xinke</au><au>Fan, Wendong</au><au>Deng, Zelin</au><au>Jiang, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSSTN: a multi-scale spatio-temporal network for traffic flow prediction</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>15</volume><issue>7</issue><spage>2827</spage><epage>2841</epage><pages>2827-2841</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Spatio-temporal feature extraction and fusion are crucial to traffic prediction accuracy. However, the complicated spatio-temporal correlations and dependencies between traffic nodes make the problem quite challenging. In this paper, a multi-scale spatio-temporal network (MSSTN) is proposed to exploit complicated local and nonlocal correlations in traffic flow for traffic prediction. In the proposed method, a convolutional neural network, a self-attention module, and a graph convolution network (GCN) are integrated to extract and fuse multi-scale temporal and spatial features to make predictions. Specifically, a self-adaption temporal convolutional neural network (SATCN) is first employed to extract local temporal correlations between adjacent time slices. Furthermore, a self-attention module is applied to capture the long-range nonlocal traffic dependence in the temporal dimension and fuse it with the local features. Then, a graph convolutional network module is utilized to learn spatio-temporal features of the traffic flow to exploit the mutual dependencies between traffic nodes. Experimental results on public traffic datasets demonstrate the superiority of our method over compared state-of-the-art methods. The ablation experiments confirm the effectiveness of each component of the proposed model. Our implementation on Pytorch is publicly available at
https://github.com/csust-sonie/MSSTN
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-023-02067-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8518-793X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2024-07, Vol.15 (7), p.2827-2841 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_3068445408 |
source | SpringerLink Journals |
subjects | Ablation Artificial Intelligence Artificial neural networks Complex Systems Computational Intelligence Control Correlation Deep learning Engineering Feature extraction Machine learning Mechatronics Modules Neural networks Nodes Original Article Pattern Recognition Robotics Systems Biology Traffic control Traffic flow |
title | MSSTN: a multi-scale spatio-temporal network for traffic flow prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSSTN:%20a%20multi-scale%20spatio-temporal%20network%20for%20traffic%20flow%20prediction&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Song,%20Yun&rft.date=2024-07-01&rft.volume=15&rft.issue=7&rft.spage=2827&rft.epage=2841&rft.pages=2827-2841&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-023-02067-2&rft_dat=%3Cproquest_cross%3E3068255465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068255465&rft_id=info:pmid/&rfr_iscdi=true |