[Fundamentals] 8. Works on Mac or Windows! Practical Deep Learning with PyTorch

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Radiological Technology 2024/04/20, Vol.80(4), pp.409-416
1. Verfasser: Hara, Takeshi
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 4
container_start_page 409
container_title Japanese Journal of Radiological Technology
container_volume 80
creator Hara, Takeshi
description
doi_str_mv 10.6009/jjrt.2024-2336
format Article
fullrecord <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_3068344770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068344770</sourcerecordid><originalsourceid>FETCH-LOGICAL-j890-cea7e255be2f183acf4625594a5b72795f8e4307587035224144b1803cf62ea53</originalsourceid><addsrcrecordid>eNo9UE1PAjEQbYwmEuTqucbzYrcfu92jAVETDBxIOBjTzJYu7Aottrsh_Hu7wXiZyXy892YeQvcpGWeEFE9N49sxJZQnlLHsCg1SKdOES8mu0YCwrEg4I-IWjUKoSxIRsUX4AC0-Z53dwMHYFvbhC8sxXjv_HbCz-AM0dh6va7txp_CAlx50W2vY46kxRzw34G1tt_hUtzu8PK-c17s7dFNFIjP6y0O0mr2sJm_JfPH6PnmeJ40sSKIN5IYKURpapZKBrngWy4KDKHOaF6KSJt6bC5kTJijlKedlKgnTVUYNCDZEjxfao3c_nQmtalznbVRUjGSScZ5H5BBNL1tNaGFr1NHXB_BnBT6-sTeqN01JongfevNUb97_WO_AK2PZLzFpZ1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068344770</pqid></control><display><type>article</type><title>[Fundamentals] 8. Works on Mac or Windows! Practical Deep Learning with PyTorch</title><source>EZB Electronic Journals Library</source><creator>Hara, Takeshi</creator><creatorcontrib>Hara, Takeshi</creatorcontrib><identifier>ISSN: 0369-4305</identifier><identifier>EISSN: 1881-4883</identifier><identifier>DOI: 10.6009/jjrt.2024-2336</identifier><language>jpn</language><publisher>Kyoto: Japanese Society of Radiological Technology</publisher><subject>Deep learning</subject><ispartof>Japanese Journal of Radiological Technology, 2024/04/20, Vol.80(4), pp.409-416</ispartof><rights>2024 Japanese Society of Radiological Technology</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Hara, Takeshi</creatorcontrib><title>[Fundamentals] 8. Works on Mac or Windows! Practical Deep Learning with PyTorch</title><title>Japanese Journal of Radiological Technology</title><addtitle>Jpn. J. Radiol. Technol.</addtitle><subject>Deep learning</subject><issn>0369-4305</issn><issn>1881-4883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PAjEQbYwmEuTqucbzYrcfu92jAVETDBxIOBjTzJYu7Aottrsh_Hu7wXiZyXy892YeQvcpGWeEFE9N49sxJZQnlLHsCg1SKdOES8mu0YCwrEg4I-IWjUKoSxIRsUX4AC0-Z53dwMHYFvbhC8sxXjv_HbCz-AM0dh6va7txp_CAlx50W2vY46kxRzw34G1tt_hUtzu8PK-c17s7dFNFIjP6y0O0mr2sJm_JfPH6PnmeJ40sSKIN5IYKURpapZKBrngWy4KDKHOaF6KSJt6bC5kTJijlKedlKgnTVUYNCDZEjxfao3c_nQmtalznbVRUjGSScZ5H5BBNL1tNaGFr1NHXB_BnBT6-sTeqN01JongfevNUb97_WO_AK2PZLzFpZ1M</recordid><startdate>20240420</startdate><enddate>20240420</enddate><creator>Hara, Takeshi</creator><general>Japanese Society of Radiological Technology</general><general>Japan Science and Technology Agency</general><scope>7QO</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20240420</creationdate><title>[Fundamentals] 8. Works on Mac or Windows! Practical Deep Learning with PyTorch</title><author>Hara, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j890-cea7e255be2f183acf4625594a5b72795f8e4307587035224144b1803cf62ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2024</creationdate><topic>Deep learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Hara, Takeshi</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Japanese Journal of Radiological Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[Fundamentals] 8. Works on Mac or Windows! Practical Deep Learning with PyTorch</atitle><jtitle>Japanese Journal of Radiological Technology</jtitle><addtitle>Jpn. J. Radiol. Technol.</addtitle><date>2024-04-20</date><risdate>2024</risdate><volume>80</volume><issue>4</issue><spage>409</spage><epage>416</epage><pages>409-416</pages><issn>0369-4305</issn><eissn>1881-4883</eissn><cop>Kyoto</cop><pub>Japanese Society of Radiological Technology</pub><doi>10.6009/jjrt.2024-2336</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0369-4305
ispartof Japanese Journal of Radiological Technology, 2024/04/20, Vol.80(4), pp.409-416
issn 0369-4305
1881-4883
language jpn
recordid cdi_proquest_journals_3068344770
source EZB Electronic Journals Library
subjects Deep learning
title [Fundamentals] 8. Works on Mac or Windows! Practical Deep Learning with PyTorch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5BFundamentals%5D%208.%20Works%20on%20Mac%20or%20Windows!%20Practical%20Deep%20Learning%20with%20PyTorch&rft.jtitle=Japanese%20Journal%20of%20Radiological%20Technology&rft.au=Hara,%20Takeshi&rft.date=2024-04-20&rft.volume=80&rft.issue=4&rft.spage=409&rft.epage=416&rft.pages=409-416&rft.issn=0369-4305&rft.eissn=1881-4883&rft_id=info:doi/10.6009/jjrt.2024-2336&rft_dat=%3Cproquest_jstag%3E3068344770%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068344770&rft_id=info:pmid/&rfr_iscdi=true