Si1-x-yGeySnx alloy formation by Sn ion implantation and flash lamp annealing

For many years, Si1-yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Steuer, Oliver, Michailow, Michail, Hübner, René, Pyszniak, Krzysztof, Turek, Marcin, Kentsch, Ulrich, Ganss, Fabian, Muhammad Moazzam Khan, Rebohle, Lars, Zhou, Shengqiang, Knoch, Joachim, Helm, Manfred, Cuniberti, Gianaurelio, Georgiev, Yordan M, Prucnal, Slawomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Steuer, Oliver
Michailow, Michail
Hübner, René
Pyszniak, Krzysztof
Turek, Marcin
Kentsch, Ulrich
Ganss, Fabian
Muhammad Moazzam Khan
Rebohle, Lars
Zhou, Shengqiang
Knoch, Joachim
Helm, Manfred
Cuniberti, Gianaurelio
Georgiev, Yordan M
Prucnal, Slawomir
description For many years, Si1-yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads to additional possibilities for tailoring the material properties. Adding Sn enables effective band gap and strain engineering and can improve the carrier mobilities, which makes Si1-x-yGeySnx alloys promising candidates for future opto- and nanoelectronics applications. The bottom-up approach for epitaxial growth of Si1-x-yGeySnx, e.g., by chemical vapor deposition and molecular beam epitaxy, allows tuning the material properties in the growth direction only; the realization of local material modifications to generate lateral heterostructures with such a bottom-up approach is extremely elaborate, since it would require the use of lithography, etching, and either selective epitaxy or epitaxy and chemical-mechanical polishing giving rise to interface issues, non-planar substrates, etc. This article shows the possibility of fabricating Si1-x-yGeySnx alloys by Sn ion beam implantation into Si1-yGey layers followed by millisecond-range flash lamp annealing (FLA). The materials are investigated by Rutherford backscattering spectrometry, micro Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. The fabrication approach was adapted to ultra-thin Si1-yGey layers on silicon-on-insulator substrates. The results show the fabrication of single-crystalline Si1-x-yGeySnx with up to 2.3 at.% incorporated Sn without any indication of Sn segregation after recrystallization via FLA. Finally, we exhibit the possibility of implanting Sn locally in ultra-thin Si1-yGey films by masking unstructured regions on the chip.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3068241027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068241027</sourcerecordid><originalsourceid>FETCH-proquest_journals_30682410273</originalsourceid><addsrcrecordid>eNqNissKwjAURIMgWLT_EHAdSJO-9uJj46ru5Yqpptze1KaF5u-t6Ae4mjlzZsEipXUiylSpFYu9b6SUKi9UlumInSubiEmEowkVTRwQXeC161sYrCN-C7wi_mm27RBo-M5Ad14j-CdHaLsZyQBaemzYsgb0Jv7lmm0P-8vuJLrevUbjh2vjxp5mddUyL1WaSFXo_15vTfg9ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068241027</pqid></control><display><type>article</type><title>Si1-x-yGeySnx alloy formation by Sn ion implantation and flash lamp annealing</title><source>Freely Accessible Journals</source><creator>Steuer, Oliver ; Michailow, Michail ; Hübner, René ; Pyszniak, Krzysztof ; Turek, Marcin ; Kentsch, Ulrich ; Ganss, Fabian ; Muhammad Moazzam Khan ; Rebohle, Lars ; Zhou, Shengqiang ; Knoch, Joachim ; Helm, Manfred ; Cuniberti, Gianaurelio ; Georgiev, Yordan M ; Prucnal, Slawomir</creator><creatorcontrib>Steuer, Oliver ; Michailow, Michail ; Hübner, René ; Pyszniak, Krzysztof ; Turek, Marcin ; Kentsch, Ulrich ; Ganss, Fabian ; Muhammad Moazzam Khan ; Rebohle, Lars ; Zhou, Shengqiang ; Knoch, Joachim ; Helm, Manfred ; Cuniberti, Gianaurelio ; Georgiev, Yordan M ; Prucnal, Slawomir</creatorcontrib><description>For many years, Si1-yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads to additional possibilities for tailoring the material properties. Adding Sn enables effective band gap and strain engineering and can improve the carrier mobilities, which makes Si1-x-yGeySnx alloys promising candidates for future opto- and nanoelectronics applications. The bottom-up approach for epitaxial growth of Si1-x-yGeySnx, e.g., by chemical vapor deposition and molecular beam epitaxy, allows tuning the material properties in the growth direction only; the realization of local material modifications to generate lateral heterostructures with such a bottom-up approach is extremely elaborate, since it would require the use of lithography, etching, and either selective epitaxy or epitaxy and chemical-mechanical polishing giving rise to interface issues, non-planar substrates, etc. This article shows the possibility of fabricating Si1-x-yGeySnx alloys by Sn ion beam implantation into Si1-yGey layers followed by millisecond-range flash lamp annealing (FLA). The materials are investigated by Rutherford backscattering spectrometry, micro Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. The fabrication approach was adapted to ultra-thin Si1-yGey layers on silicon-on-insulator substrates. The results show the fabrication of single-crystalline Si1-x-yGeySnx with up to 2.3 at.% incorporated Sn without any indication of Sn segregation after recrystallization via FLA. Finally, we exhibit the possibility of implanting Sn locally in ultra-thin Si1-yGey films by masking unstructured regions on the chip.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alloying ; Alloys ; Annealing ; Chemical vapor deposition ; Chemical-mechanical polishing ; Epitaxial growth ; Flash lamps ; Heterostructures ; Ion implantation ; Material properties ; Molecular beam epitaxy ; Nanoelectronics ; Nanotechnology devices ; Raman spectroscopy ; Recrystallization ; Silicon substrates ; Single crystals ; Thin films ; Tin</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Steuer, Oliver</creatorcontrib><creatorcontrib>Michailow, Michail</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Pyszniak, Krzysztof</creatorcontrib><creatorcontrib>Turek, Marcin</creatorcontrib><creatorcontrib>Kentsch, Ulrich</creatorcontrib><creatorcontrib>Ganss, Fabian</creatorcontrib><creatorcontrib>Muhammad Moazzam Khan</creatorcontrib><creatorcontrib>Rebohle, Lars</creatorcontrib><creatorcontrib>Zhou, Shengqiang</creatorcontrib><creatorcontrib>Knoch, Joachim</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Cuniberti, Gianaurelio</creatorcontrib><creatorcontrib>Georgiev, Yordan M</creatorcontrib><creatorcontrib>Prucnal, Slawomir</creatorcontrib><title>Si1-x-yGeySnx alloy formation by Sn ion implantation and flash lamp annealing</title><title>arXiv.org</title><description>For many years, Si1-yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads to additional possibilities for tailoring the material properties. Adding Sn enables effective band gap and strain engineering and can improve the carrier mobilities, which makes Si1-x-yGeySnx alloys promising candidates for future opto- and nanoelectronics applications. The bottom-up approach for epitaxial growth of Si1-x-yGeySnx, e.g., by chemical vapor deposition and molecular beam epitaxy, allows tuning the material properties in the growth direction only; the realization of local material modifications to generate lateral heterostructures with such a bottom-up approach is extremely elaborate, since it would require the use of lithography, etching, and either selective epitaxy or epitaxy and chemical-mechanical polishing giving rise to interface issues, non-planar substrates, etc. This article shows the possibility of fabricating Si1-x-yGeySnx alloys by Sn ion beam implantation into Si1-yGey layers followed by millisecond-range flash lamp annealing (FLA). The materials are investigated by Rutherford backscattering spectrometry, micro Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. The fabrication approach was adapted to ultra-thin Si1-yGey layers on silicon-on-insulator substrates. The results show the fabrication of single-crystalline Si1-x-yGeySnx with up to 2.3 at.% incorporated Sn without any indication of Sn segregation after recrystallization via FLA. Finally, we exhibit the possibility of implanting Sn locally in ultra-thin Si1-yGey films by masking unstructured regions on the chip.</description><subject>Alloying</subject><subject>Alloys</subject><subject>Annealing</subject><subject>Chemical vapor deposition</subject><subject>Chemical-mechanical polishing</subject><subject>Epitaxial growth</subject><subject>Flash lamps</subject><subject>Heterostructures</subject><subject>Ion implantation</subject><subject>Material properties</subject><subject>Molecular beam epitaxy</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Raman spectroscopy</subject><subject>Recrystallization</subject><subject>Silicon substrates</subject><subject>Single crystals</subject><subject>Thin films</subject><subject>Tin</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAURIMgWLT_EHAdSJO-9uJj46ru5Yqpptze1KaF5u-t6Ae4mjlzZsEipXUiylSpFYu9b6SUKi9UlumInSubiEmEowkVTRwQXeC161sYrCN-C7wi_mm27RBo-M5Ad14j-CdHaLsZyQBaemzYsgb0Jv7lmm0P-8vuJLrevUbjh2vjxp5mddUyL1WaSFXo_15vTfg9ZA</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Steuer, Oliver</creator><creator>Michailow, Michail</creator><creator>Hübner, René</creator><creator>Pyszniak, Krzysztof</creator><creator>Turek, Marcin</creator><creator>Kentsch, Ulrich</creator><creator>Ganss, Fabian</creator><creator>Muhammad Moazzam Khan</creator><creator>Rebohle, Lars</creator><creator>Zhou, Shengqiang</creator><creator>Knoch, Joachim</creator><creator>Helm, Manfred</creator><creator>Cuniberti, Gianaurelio</creator><creator>Georgiev, Yordan M</creator><creator>Prucnal, Slawomir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240613</creationdate><title>Si1-x-yGeySnx alloy formation by Sn ion implantation and flash lamp annealing</title><author>Steuer, Oliver ; Michailow, Michail ; Hübner, René ; Pyszniak, Krzysztof ; Turek, Marcin ; Kentsch, Ulrich ; Ganss, Fabian ; Muhammad Moazzam Khan ; Rebohle, Lars ; Zhou, Shengqiang ; Knoch, Joachim ; Helm, Manfred ; Cuniberti, Gianaurelio ; Georgiev, Yordan M ; Prucnal, Slawomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30682410273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>Annealing</topic><topic>Chemical vapor deposition</topic><topic>Chemical-mechanical polishing</topic><topic>Epitaxial growth</topic><topic>Flash lamps</topic><topic>Heterostructures</topic><topic>Ion implantation</topic><topic>Material properties</topic><topic>Molecular beam epitaxy</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Raman spectroscopy</topic><topic>Recrystallization</topic><topic>Silicon substrates</topic><topic>Single crystals</topic><topic>Thin films</topic><topic>Tin</topic><toplevel>online_resources</toplevel><creatorcontrib>Steuer, Oliver</creatorcontrib><creatorcontrib>Michailow, Michail</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Pyszniak, Krzysztof</creatorcontrib><creatorcontrib>Turek, Marcin</creatorcontrib><creatorcontrib>Kentsch, Ulrich</creatorcontrib><creatorcontrib>Ganss, Fabian</creatorcontrib><creatorcontrib>Muhammad Moazzam Khan</creatorcontrib><creatorcontrib>Rebohle, Lars</creatorcontrib><creatorcontrib>Zhou, Shengqiang</creatorcontrib><creatorcontrib>Knoch, Joachim</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Cuniberti, Gianaurelio</creatorcontrib><creatorcontrib>Georgiev, Yordan M</creatorcontrib><creatorcontrib>Prucnal, Slawomir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steuer, Oliver</au><au>Michailow, Michail</au><au>Hübner, René</au><au>Pyszniak, Krzysztof</au><au>Turek, Marcin</au><au>Kentsch, Ulrich</au><au>Ganss, Fabian</au><au>Muhammad Moazzam Khan</au><au>Rebohle, Lars</au><au>Zhou, Shengqiang</au><au>Knoch, Joachim</au><au>Helm, Manfred</au><au>Cuniberti, Gianaurelio</au><au>Georgiev, Yordan M</au><au>Prucnal, Slawomir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Si1-x-yGeySnx alloy formation by Sn ion implantation and flash lamp annealing</atitle><jtitle>arXiv.org</jtitle><date>2024-06-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For many years, Si1-yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads to additional possibilities for tailoring the material properties. Adding Sn enables effective band gap and strain engineering and can improve the carrier mobilities, which makes Si1-x-yGeySnx alloys promising candidates for future opto- and nanoelectronics applications. The bottom-up approach for epitaxial growth of Si1-x-yGeySnx, e.g., by chemical vapor deposition and molecular beam epitaxy, allows tuning the material properties in the growth direction only; the realization of local material modifications to generate lateral heterostructures with such a bottom-up approach is extremely elaborate, since it would require the use of lithography, etching, and either selective epitaxy or epitaxy and chemical-mechanical polishing giving rise to interface issues, non-planar substrates, etc. This article shows the possibility of fabricating Si1-x-yGeySnx alloys by Sn ion beam implantation into Si1-yGey layers followed by millisecond-range flash lamp annealing (FLA). The materials are investigated by Rutherford backscattering spectrometry, micro Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. The fabrication approach was adapted to ultra-thin Si1-yGey layers on silicon-on-insulator substrates. The results show the fabrication of single-crystalline Si1-x-yGeySnx with up to 2.3 at.% incorporated Sn without any indication of Sn segregation after recrystallization via FLA. Finally, we exhibit the possibility of implanting Sn locally in ultra-thin Si1-yGey films by masking unstructured regions on the chip.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3068241027
source Freely Accessible Journals
subjects Alloying
Alloys
Annealing
Chemical vapor deposition
Chemical-mechanical polishing
Epitaxial growth
Flash lamps
Heterostructures
Ion implantation
Material properties
Molecular beam epitaxy
Nanoelectronics
Nanotechnology devices
Raman spectroscopy
Recrystallization
Silicon substrates
Single crystals
Thin films
Tin
title Si1-x-yGeySnx alloy formation by Sn ion implantation and flash lamp annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Si1-x-yGeySnx%20alloy%20formation%20by%20Sn%20ion%20implantation%20and%20flash%20lamp%20annealing&rft.jtitle=arXiv.org&rft.au=Steuer,%20Oliver&rft.date=2024-06-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3068241027%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068241027&rft_id=info:pmid/&rfr_iscdi=true