Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans

Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Hein, Stefan P, Schultheiss, Manuel, Gafita, Andrei, Zaum, Raphael, Yagubbayli, Farid, Tauber, Robert, Rauscher, Isabel, Eiber, Matthias, Pfeiffer, Franz, Weber, Wolfgang A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hein, Stefan P
Schultheiss, Manuel
Gafita, Andrei
Zaum, Raphael
Yagubbayli, Farid
Tauber, Robert
Rauscher, Isabel
Eiber, Matthias
Pfeiffer, Franz
Weber, Wolfgang A
description Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of response to therapy. Automated, AI based approaches for lesion tracking hold promise in enabling the analysis of many more lesions and thus providing a better assessment of tumor response. This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans. Our approach is applied on the laborious task of tracking a high number of bone lesions in full-body baseline and follow-up [68Ga]Ga- or [18F]F-PSMA PET/CT scans after two cycles of [177Lu]Lu-PSMA therapy of metastatic castration resistant prostate cancer patients. Data preparation includes lesion segmentation and affine registration. Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions. Experiments have been performed with different input patch types and a Siamese network in 2D and 3D. The CNN model successfully learned to classify lesion assignments, reaching a lesion tracking accuracy of 83 % in its best configuration with an AUC = 0.91. For remaining lesions the pipeline accomplished a re-identification rate of 89 %. We proved that a CNN may facilitate the tracking of multiple lesions in PSMA PET/CT scans. Future clinical studies are necessary if this improves the prediction of the outcome of therapies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3068238517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068238517</sourcerecordid><originalsourceid>FETCH-proquest_journals_30682385173</originalsourceid><addsrcrecordid>eNqNjE0LgkAURYcgSMr_8KC1NM7kB-1EjIQKwdnLpJOM6Wi-pL-fi9q3unDuuXdBLMa564R7xlbERmwopcwPmOdxi9Sif8uxQohSOCvUvQExyvKhTQ3aQJaIXSwg7WQ9kwNEkGvZKVTOTaKqIL5eIdODarVRIIeh1TOcP7L8Ev3GeSkNbsjyLltU9jfXZHtMRHxyhrF_TgpfRdNPo5mrglM_ZDz03ID_Z30A6N5Dhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068238517</pqid></control><display><type>article</type><title>Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans</title><source>Free E- Journals</source><creator>Hein, Stefan P ; Schultheiss, Manuel ; Gafita, Andrei ; Zaum, Raphael ; Yagubbayli, Farid ; Tauber, Robert ; Rauscher, Isabel ; Eiber, Matthias ; Pfeiffer, Franz ; Weber, Wolfgang A</creator><creatorcontrib>Hein, Stefan P ; Schultheiss, Manuel ; Gafita, Andrei ; Zaum, Raphael ; Yagubbayli, Farid ; Tauber, Robert ; Rauscher, Isabel ; Eiber, Matthias ; Pfeiffer, Franz ; Weber, Wolfgang A</creatorcontrib><description>Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of response to therapy. Automated, AI based approaches for lesion tracking hold promise in enabling the analysis of many more lesions and thus providing a better assessment of tumor response. This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans. Our approach is applied on the laborious task of tracking a high number of bone lesions in full-body baseline and follow-up [68Ga]Ga- or [18F]F-PSMA PET/CT scans after two cycles of [177Lu]Lu-PSMA therapy of metastatic castration resistant prostate cancer patients. Data preparation includes lesion segmentation and affine registration. Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions. Experiments have been performed with different input patch types and a Siamese network in 2D and 3D. The CNN model successfully learned to classify lesion assignments, reaching a lesion tracking accuracy of 83 % in its best configuration with an AUC = 0.91. For remaining lesions the pipeline accomplished a re-identification rate of 89 %. We proved that a CNN may facilitate the tracking of multiple lesions in PSMA PET/CT scans. Future clinical studies are necessary if this improves the prediction of the outcome of therapies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Computed tomography ; Heterogeneity ; Lesions ; Medical imaging ; Metastasis ; Positron emission ; Tracking ; Tumors</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hein, Stefan P</creatorcontrib><creatorcontrib>Schultheiss, Manuel</creatorcontrib><creatorcontrib>Gafita, Andrei</creatorcontrib><creatorcontrib>Zaum, Raphael</creatorcontrib><creatorcontrib>Yagubbayli, Farid</creatorcontrib><creatorcontrib>Tauber, Robert</creatorcontrib><creatorcontrib>Rauscher, Isabel</creatorcontrib><creatorcontrib>Eiber, Matthias</creatorcontrib><creatorcontrib>Pfeiffer, Franz</creatorcontrib><creatorcontrib>Weber, Wolfgang A</creatorcontrib><title>Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans</title><title>arXiv.org</title><description>Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of response to therapy. Automated, AI based approaches for lesion tracking hold promise in enabling the analysis of many more lesions and thus providing a better assessment of tumor response. This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans. Our approach is applied on the laborious task of tracking a high number of bone lesions in full-body baseline and follow-up [68Ga]Ga- or [18F]F-PSMA PET/CT scans after two cycles of [177Lu]Lu-PSMA therapy of metastatic castration resistant prostate cancer patients. Data preparation includes lesion segmentation and affine registration. Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions. Experiments have been performed with different input patch types and a Siamese network in 2D and 3D. The CNN model successfully learned to classify lesion assignments, reaching a lesion tracking accuracy of 83 % in its best configuration with an AUC = 0.91. For remaining lesions the pipeline accomplished a re-identification rate of 89 %. We proved that a CNN may facilitate the tracking of multiple lesions in PSMA PET/CT scans. Future clinical studies are necessary if this improves the prediction of the outcome of therapies.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Heterogeneity</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Metastasis</subject><subject>Positron emission</subject><subject>Tracking</subject><subject>Tumors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjE0LgkAURYcgSMr_8KC1NM7kB-1EjIQKwdnLpJOM6Wi-pL-fi9q3unDuuXdBLMa564R7xlbERmwopcwPmOdxi9Sif8uxQohSOCvUvQExyvKhTQ3aQJaIXSwg7WQ9kwNEkGvZKVTOTaKqIL5eIdODarVRIIeh1TOcP7L8Ev3GeSkNbsjyLltU9jfXZHtMRHxyhrF_TgpfRdNPo5mrglM_ZDz03ID_Z30A6N5Dhg</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Hein, Stefan P</creator><creator>Schultheiss, Manuel</creator><creator>Gafita, Andrei</creator><creator>Zaum, Raphael</creator><creator>Yagubbayli, Farid</creator><creator>Tauber, Robert</creator><creator>Rauscher, Isabel</creator><creator>Eiber, Matthias</creator><creator>Pfeiffer, Franz</creator><creator>Weber, Wolfgang A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240708</creationdate><title>Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans</title><author>Hein, Stefan P ; Schultheiss, Manuel ; Gafita, Andrei ; Zaum, Raphael ; Yagubbayli, Farid ; Tauber, Robert ; Rauscher, Isabel ; Eiber, Matthias ; Pfeiffer, Franz ; Weber, Wolfgang A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30682385173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Heterogeneity</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Metastasis</topic><topic>Positron emission</topic><topic>Tracking</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hein, Stefan P</creatorcontrib><creatorcontrib>Schultheiss, Manuel</creatorcontrib><creatorcontrib>Gafita, Andrei</creatorcontrib><creatorcontrib>Zaum, Raphael</creatorcontrib><creatorcontrib>Yagubbayli, Farid</creatorcontrib><creatorcontrib>Tauber, Robert</creatorcontrib><creatorcontrib>Rauscher, Isabel</creatorcontrib><creatorcontrib>Eiber, Matthias</creatorcontrib><creatorcontrib>Pfeiffer, Franz</creatorcontrib><creatorcontrib>Weber, Wolfgang A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hein, Stefan P</au><au>Schultheiss, Manuel</au><au>Gafita, Andrei</au><au>Zaum, Raphael</au><au>Yagubbayli, Farid</au><au>Tauber, Robert</au><au>Rauscher, Isabel</au><au>Eiber, Matthias</au><au>Pfeiffer, Franz</au><au>Weber, Wolfgang A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans</atitle><jtitle>arXiv.org</jtitle><date>2024-07-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of response to therapy. Automated, AI based approaches for lesion tracking hold promise in enabling the analysis of many more lesions and thus providing a better assessment of tumor response. This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans. Our approach is applied on the laborious task of tracking a high number of bone lesions in full-body baseline and follow-up [68Ga]Ga- or [18F]F-PSMA PET/CT scans after two cycles of [177Lu]Lu-PSMA therapy of metastatic castration resistant prostate cancer patients. Data preparation includes lesion segmentation and affine registration. Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions. Experiments have been performed with different input patch types and a Siamese network in 2D and 3D. The CNN model successfully learned to classify lesion assignments, reaching a lesion tracking accuracy of 83 % in its best configuration with an AUC = 0.91. For remaining lesions the pipeline accomplished a re-identification rate of 89 %. We proved that a CNN may facilitate the tracking of multiple lesions in PSMA PET/CT scans. Future clinical studies are necessary if this improves the prediction of the outcome of therapies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3068238517
source Free E- Journals
subjects Algorithms
Artificial neural networks
Classification
Computed tomography
Heterogeneity
Lesions
Medical imaging
Metastasis
Positron emission
Tracking
Tumors
title Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20AI%20Lesion%20Tracking%20in%20PET/CT%20Imaging:%20A%20Siamese-based%20CNN%20Pipeline%20applied%20on%20PSMA%20PET/CT%20Scans&rft.jtitle=arXiv.org&rft.au=Hein,%20Stefan%20P&rft.date=2024-07-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3068238517%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068238517&rft_id=info:pmid/&rfr_iscdi=true