Structural changes in Ge1-xSnx and Si1-x-yGeySnx thin films on SOI substrates treated by pulse laser annealing

Ge1-xSnx and Si1-x-yGeySnx alloys are promising materials for future opto- and nanoelectronics applications. These alloys enable effective band-gap engineering, broad adjustability of their lattice parameter, exhibit much higher carrier mobility than pure Si, and are compatible with the CMOS technol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Steuer, Oliver, Schwarz, Daniel, Oehme, Michael, Bärwolf, Florian, Cheng, Yu, Ganss, Fabian, Hübner, René, Heller, René, Zhou, Shengqiang, Helm, Manfred, Cuniberti, Gianaurelio, Georgiev, Yordan M, Prucnal, Slawomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Steuer, Oliver
Schwarz, Daniel
Oehme, Michael
Bärwolf, Florian
Cheng, Yu
Ganss, Fabian
Hübner, René
Heller, René
Zhou, Shengqiang
Helm, Manfred
Cuniberti, Gianaurelio
Georgiev, Yordan M
Prucnal, Slawomir
description Ge1-xSnx and Si1-x-yGeySnx alloys are promising materials for future opto- and nanoelectronics applications. These alloys enable effective band-gap engineering, broad adjustability of their lattice parameter, exhibit much higher carrier mobility than pure Si, and are compatible with the CMOS technology. Unfortunately, the equilibrium solid solubility of Sn in Si1-xGex is less than 1% and the pseudomorphic growth of Si1-x-yGeySnx on Ge or Si can cause in-plane compressive strain in the grown layer, degrading the superior properties of these alloys. Therefore, post-growth strain engineering by ultrafast non-equilibrium thermal treatments like pulse laser annealing (PLA) is needed to improve the layer quality. In this article, Ge0.94Sn0.06 and Si0.14Ge0.8Sn0.06 thin films grown on silicon-on-insulator substrates by molecular beam epitaxy were post growth thermally treated by PLA. The material is analyzed before and after the thermal treatments by transmission electron microscopy, X-ray diffraction (XRD), Rutherford backscattering spectrometry, secondary ion mass spectrometry, and Hall effect measurements. It is shown that after annealing, the material is single-crystalline with improved crystallinity than the as-grown layer. This is reflected in a significantly increased XRD reflection intensity, well-ordered atomic pillars, and increased active carrier concentrations up to 4x1019 cm-3.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3068236261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068236261</sourcerecordid><originalsourceid>FETCH-proquest_journals_30682362613</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMgKNo7fHAdSBNb3YtWVy7iXqJNtRJ_NT-B9vZG8ACuhpk3MyM2lUrlfL2UcsIyoocQQpYrWRRqylAHH68heuPgejd4swQtQmVz3mvswWANuk2GD5Udvkm4J9607knQIejjASheKHgT0jR4m7SGywCv6MiCM2R9ekFrXIu3ORs3JuXZT2dssdueNnv-8t07WgrnRxc9JnRWolxLVcoyV_-1PphISSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068236261</pqid></control><display><type>article</type><title>Structural changes in Ge1-xSnx and Si1-x-yGeySnx thin films on SOI substrates treated by pulse laser annealing</title><source>Free E- Journals</source><creator>Steuer, Oliver ; Schwarz, Daniel ; Oehme, Michael ; Bärwolf, Florian ; Cheng, Yu ; Ganss, Fabian ; Hübner, René ; Heller, René ; Zhou, Shengqiang ; Helm, Manfred ; Cuniberti, Gianaurelio ; Georgiev, Yordan M ; Prucnal, Slawomir</creator><creatorcontrib>Steuer, Oliver ; Schwarz, Daniel ; Oehme, Michael ; Bärwolf, Florian ; Cheng, Yu ; Ganss, Fabian ; Hübner, René ; Heller, René ; Zhou, Shengqiang ; Helm, Manfred ; Cuniberti, Gianaurelio ; Georgiev, Yordan M ; Prucnal, Slawomir</creatorcontrib><description>Ge1-xSnx and Si1-x-yGeySnx alloys are promising materials for future opto- and nanoelectronics applications. These alloys enable effective band-gap engineering, broad adjustability of their lattice parameter, exhibit much higher carrier mobility than pure Si, and are compatible with the CMOS technology. Unfortunately, the equilibrium solid solubility of Sn in Si1-xGex is less than 1% and the pseudomorphic growth of Si1-x-yGeySnx on Ge or Si can cause in-plane compressive strain in the grown layer, degrading the superior properties of these alloys. Therefore, post-growth strain engineering by ultrafast non-equilibrium thermal treatments like pulse laser annealing (PLA) is needed to improve the layer quality. In this article, Ge0.94Sn0.06 and Si0.14Ge0.8Sn0.06 thin films grown on silicon-on-insulator substrates by molecular beam epitaxy were post growth thermally treated by PLA. The material is analyzed before and after the thermal treatments by transmission electron microscopy, X-ray diffraction (XRD), Rutherford backscattering spectrometry, secondary ion mass spectrometry, and Hall effect measurements. It is shown that after annealing, the material is single-crystalline with improved crystallinity than the as-grown layer. This is reflected in a significantly increased XRD reflection intensity, well-ordered atomic pillars, and increased active carrier concentrations up to 4x1019 cm-3.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annealing ; Carrier density ; Carrier mobility ; Compressive properties ; Energy gap ; Epitaxial growth ; Hall effect ; Intermetallic compounds ; Laser beam annealing ; Molecular beam epitaxy ; Nanoelectronics ; Scientific imaging ; Secondary ion mass spectrometry ; Silicon substrates ; Single crystals ; Solid solubility ; Thin films ; X-ray diffraction</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Steuer, Oliver</creatorcontrib><creatorcontrib>Schwarz, Daniel</creatorcontrib><creatorcontrib>Oehme, Michael</creatorcontrib><creatorcontrib>Bärwolf, Florian</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Ganss, Fabian</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>Zhou, Shengqiang</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Cuniberti, Gianaurelio</creatorcontrib><creatorcontrib>Georgiev, Yordan M</creatorcontrib><creatorcontrib>Prucnal, Slawomir</creatorcontrib><title>Structural changes in Ge1-xSnx and Si1-x-yGeySnx thin films on SOI substrates treated by pulse laser annealing</title><title>arXiv.org</title><description>Ge1-xSnx and Si1-x-yGeySnx alloys are promising materials for future opto- and nanoelectronics applications. These alloys enable effective band-gap engineering, broad adjustability of their lattice parameter, exhibit much higher carrier mobility than pure Si, and are compatible with the CMOS technology. Unfortunately, the equilibrium solid solubility of Sn in Si1-xGex is less than 1% and the pseudomorphic growth of Si1-x-yGeySnx on Ge or Si can cause in-plane compressive strain in the grown layer, degrading the superior properties of these alloys. Therefore, post-growth strain engineering by ultrafast non-equilibrium thermal treatments like pulse laser annealing (PLA) is needed to improve the layer quality. In this article, Ge0.94Sn0.06 and Si0.14Ge0.8Sn0.06 thin films grown on silicon-on-insulator substrates by molecular beam epitaxy were post growth thermally treated by PLA. The material is analyzed before and after the thermal treatments by transmission electron microscopy, X-ray diffraction (XRD), Rutherford backscattering spectrometry, secondary ion mass spectrometry, and Hall effect measurements. It is shown that after annealing, the material is single-crystalline with improved crystallinity than the as-grown layer. This is reflected in a significantly increased XRD reflection intensity, well-ordered atomic pillars, and increased active carrier concentrations up to 4x1019 cm-3.</description><subject>Annealing</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Compressive properties</subject><subject>Energy gap</subject><subject>Epitaxial growth</subject><subject>Hall effect</subject><subject>Intermetallic compounds</subject><subject>Laser beam annealing</subject><subject>Molecular beam epitaxy</subject><subject>Nanoelectronics</subject><subject>Scientific imaging</subject><subject>Secondary ion mass spectrometry</subject><subject>Silicon substrates</subject><subject>Single crystals</subject><subject>Solid solubility</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEEKwjAURIMgKNo7fHAdSBNb3YtWVy7iXqJNtRJ_NT-B9vZG8ACuhpk3MyM2lUrlfL2UcsIyoocQQpYrWRRqylAHH68heuPgejd4swQtQmVz3mvswWANuk2GD5Udvkm4J9607knQIejjASheKHgT0jR4m7SGywCv6MiCM2R9ekFrXIu3ORs3JuXZT2dssdueNnv-8t07WgrnRxc9JnRWolxLVcoyV_-1PphISSE</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Steuer, Oliver</creator><creator>Schwarz, Daniel</creator><creator>Oehme, Michael</creator><creator>Bärwolf, Florian</creator><creator>Cheng, Yu</creator><creator>Ganss, Fabian</creator><creator>Hübner, René</creator><creator>Heller, René</creator><creator>Zhou, Shengqiang</creator><creator>Helm, Manfred</creator><creator>Cuniberti, Gianaurelio</creator><creator>Georgiev, Yordan M</creator><creator>Prucnal, Slawomir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240613</creationdate><title>Structural changes in Ge1-xSnx and Si1-x-yGeySnx thin films on SOI substrates treated by pulse laser annealing</title><author>Steuer, Oliver ; Schwarz, Daniel ; Oehme, Michael ; Bärwolf, Florian ; Cheng, Yu ; Ganss, Fabian ; Hübner, René ; Heller, René ; Zhou, Shengqiang ; Helm, Manfred ; Cuniberti, Gianaurelio ; Georgiev, Yordan M ; Prucnal, Slawomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30682362613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annealing</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Compressive properties</topic><topic>Energy gap</topic><topic>Epitaxial growth</topic><topic>Hall effect</topic><topic>Intermetallic compounds</topic><topic>Laser beam annealing</topic><topic>Molecular beam epitaxy</topic><topic>Nanoelectronics</topic><topic>Scientific imaging</topic><topic>Secondary ion mass spectrometry</topic><topic>Silicon substrates</topic><topic>Single crystals</topic><topic>Solid solubility</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Steuer, Oliver</creatorcontrib><creatorcontrib>Schwarz, Daniel</creatorcontrib><creatorcontrib>Oehme, Michael</creatorcontrib><creatorcontrib>Bärwolf, Florian</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Ganss, Fabian</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>Zhou, Shengqiang</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Cuniberti, Gianaurelio</creatorcontrib><creatorcontrib>Georgiev, Yordan M</creatorcontrib><creatorcontrib>Prucnal, Slawomir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steuer, Oliver</au><au>Schwarz, Daniel</au><au>Oehme, Michael</au><au>Bärwolf, Florian</au><au>Cheng, Yu</au><au>Ganss, Fabian</au><au>Hübner, René</au><au>Heller, René</au><au>Zhou, Shengqiang</au><au>Helm, Manfred</au><au>Cuniberti, Gianaurelio</au><au>Georgiev, Yordan M</au><au>Prucnal, Slawomir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structural changes in Ge1-xSnx and Si1-x-yGeySnx thin films on SOI substrates treated by pulse laser annealing</atitle><jtitle>arXiv.org</jtitle><date>2024-06-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Ge1-xSnx and Si1-x-yGeySnx alloys are promising materials for future opto- and nanoelectronics applications. These alloys enable effective band-gap engineering, broad adjustability of their lattice parameter, exhibit much higher carrier mobility than pure Si, and are compatible with the CMOS technology. Unfortunately, the equilibrium solid solubility of Sn in Si1-xGex is less than 1% and the pseudomorphic growth of Si1-x-yGeySnx on Ge or Si can cause in-plane compressive strain in the grown layer, degrading the superior properties of these alloys. Therefore, post-growth strain engineering by ultrafast non-equilibrium thermal treatments like pulse laser annealing (PLA) is needed to improve the layer quality. In this article, Ge0.94Sn0.06 and Si0.14Ge0.8Sn0.06 thin films grown on silicon-on-insulator substrates by molecular beam epitaxy were post growth thermally treated by PLA. The material is analyzed before and after the thermal treatments by transmission electron microscopy, X-ray diffraction (XRD), Rutherford backscattering spectrometry, secondary ion mass spectrometry, and Hall effect measurements. It is shown that after annealing, the material is single-crystalline with improved crystallinity than the as-grown layer. This is reflected in a significantly increased XRD reflection intensity, well-ordered atomic pillars, and increased active carrier concentrations up to 4x1019 cm-3.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3068236261
source Free E- Journals
subjects Annealing
Carrier density
Carrier mobility
Compressive properties
Energy gap
Epitaxial growth
Hall effect
Intermetallic compounds
Laser beam annealing
Molecular beam epitaxy
Nanoelectronics
Scientific imaging
Secondary ion mass spectrometry
Silicon substrates
Single crystals
Solid solubility
Thin films
X-ray diffraction
title Structural changes in Ge1-xSnx and Si1-x-yGeySnx thin films on SOI substrates treated by pulse laser annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structural%20changes%20in%20Ge1-xSnx%20and%20Si1-x-yGeySnx%20thin%20films%20on%20SOI%20substrates%20treated%20by%20pulse%20laser%20annealing&rft.jtitle=arXiv.org&rft.au=Steuer,%20Oliver&rft.date=2024-06-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3068236261%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068236261&rft_id=info:pmid/&rfr_iscdi=true