High-Sensitivity of Self-Powered Gas Sensors Based on Piezoelectric Nanogenerators With Y-Doped 1-D ZnO Nanostructures
In this work, yttrium-doped zinc oxide (Y-doped ZnO) nanorod (NR) arrays were grown using a simple facile hydrothermal solution route at low temperature to fabricate a self-powered gas sensor based on piezoelectric nanogenerator (PENG). The material properties of the 1-D NR arrays were observed usin...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-06, Vol.24 (12), p.18731-18739 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18739 |
---|---|
container_issue | 12 |
container_start_page | 18731 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Chu, Yen-Lin Ji, Liang-Wen Xie, Jun-Hong Chu, Tung-Te |
description | In this work, yttrium-doped zinc oxide (Y-doped ZnO) nanorod (NR) arrays were grown using a simple facile hydrothermal solution route at low temperature to fabricate a self-powered gas sensor based on piezoelectric nanogenerator (PENG). The material properties of the 1-D NR arrays were observed using a field-emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX), an X-ray diffraction (XRD), and a high-resolution transmission electron microscope (HR-TEM). The Y-doping concentration in the ZnO NRs was estimated to be 0.96 at%. Photoluminescence (PL) analysis was used to analyze the distribution of oxygen defects in the nanostructures. The Y-doped ZnO NRs were grown onto the bottom substrate and indium-tin-oxide polyethylene terephthalate (ITO-PET) substrates with silver (Ag) electrode were used as the top electrode to fabricate the PENG device. By introducing regular frequency mechanical external forces through a home-made impact system, the ZnO NRs of PENG devices generate piezoelectric effects, then the output electrical characteristics of PENGs were measured. It can be seen that the NRs with a Y-doping concentration of 7.5 mM showed a significant change in output voltage and current when exposed to carbon monoxide (CO) gas. Meanwhile, the Y:ZnO PENGs revealed remarkable sensitivity (58%) in 150 ppm CO environment. As a result, it was seen that such a device exhibited a self-powering characteristic and a significant sensitivity to CO gas. In the future, the device can also be combined with the Internet of Things (IoTs) for CO gas detection (e.g., portable gas sensors). |
doi_str_mv | 10.1109/JSEN.2024.3389931 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3068176011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521452</ieee_id><sourcerecordid>3068176011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-6ec9efe303cd93ffacbec33686ff2233d658b5287e374a5850d4b2b90102bf703</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhjdGExH9ASYemngu9mO7H0dFBA0BEjR-XDa73SmU4BbbLgZ_vbvCwdNMZp53JnmC4JKSHqUkvXmaDyY9RljY4zxJU06Pgg4VIsE0DpPjtucEhzx-Ow3OnFsRQtNYxJ1gO9KLJZ5D5bTXW-13yCg0h7XCM_MNFko0zB1q98Y6dJe7ZmIqNNPwY2AN0lst0SSvzAIqsLlvqVftl-gd35tNA1N8jz6q6R_jvK2lry248-BE5WsHF4faDV4eBs_9ER5Ph4_92zGWLA09jkCmoIATLsuUK5XLAiTnURIpxRjnZSSSQrAkBh6HuUgEKcOCFSmhhBUqJrwbXO_vbqz5qsH5bGVqWzUvM06ihMYRobSh6J6S1jhnQWUbqz9zu8soyVq9Was3a_VmB71N5mqf0QDwjxeMhoLxX9i1dy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068176011</pqid></control><display><type>article</type><title>High-Sensitivity of Self-Powered Gas Sensors Based on Piezoelectric Nanogenerators With Y-Doped 1-D ZnO Nanostructures</title><source>IEEE Electronic Library (IEL)</source><creator>Chu, Yen-Lin ; Ji, Liang-Wen ; Xie, Jun-Hong ; Chu, Tung-Te</creator><creatorcontrib>Chu, Yen-Lin ; Ji, Liang-Wen ; Xie, Jun-Hong ; Chu, Tung-Te</creatorcontrib><description>In this work, yttrium-doped zinc oxide (Y-doped ZnO) nanorod (NR) arrays were grown using a simple facile hydrothermal solution route at low temperature to fabricate a self-powered gas sensor based on piezoelectric nanogenerator (PENG). The material properties of the 1-D NR arrays were observed using a field-emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX), an X-ray diffraction (XRD), and a high-resolution transmission electron microscope (HR-TEM). The Y-doping concentration in the ZnO NRs was estimated to be 0.96 at%. Photoluminescence (PL) analysis was used to analyze the distribution of oxygen defects in the nanostructures. The Y-doped ZnO NRs were grown onto the bottom substrate and indium-tin-oxide polyethylene terephthalate (ITO-PET) substrates with silver (Ag) electrode were used as the top electrode to fabricate the PENG device. By introducing regular frequency mechanical external forces through a home-made impact system, the ZnO NRs of PENG devices generate piezoelectric effects, then the output electrical characteristics of PENGs were measured. It can be seen that the NRs with a Y-doping concentration of 7.5 mM showed a significant change in output voltage and current when exposed to carbon monoxide (CO) gas. Meanwhile, the Y:ZnO PENGs revealed remarkable sensitivity (58%) in 150 ppm CO environment. As a result, it was seen that such a device exhibited a self-powering characteristic and a significant sensitivity to CO gas. In the future, the device can also be combined with the Internet of Things (IoTs) for CO gas detection (e.g., portable gas sensors).</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3389931</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1-D nanorods (NRs) ; Arrays ; Carbon monoxide ; carbon monoxide (CO) gas ; Doping ; Electrodes ; Electron microscopes ; Electron microscopy ; Gas detectors ; Gas sensors ; hydrothermal route ; II-VI semiconductor materials ; Indium tin oxides ; Internet of Things ; Low temperature ; Material properties ; Nanogenerators ; Nanorods ; Nanostructure ; Nanostructures ; Photoluminescence ; piezoelectric nanogenerator (PENG) ; Piezoelectricity ; Polyethylene terephthalate ; Sensitivity ; Sensors ; Silver ; Substrates ; Yttrium ; yttrium dopant (Y-doped) ; Zinc ; Zinc oxide ; zinc oxide (ZnO) ; Zinc oxides</subject><ispartof>IEEE sensors journal, 2024-06, Vol.24 (12), p.18731-18739</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-6ec9efe303cd93ffacbec33686ff2233d658b5287e374a5850d4b2b90102bf703</citedby><cites>FETCH-LOGICAL-c294t-6ec9efe303cd93ffacbec33686ff2233d658b5287e374a5850d4b2b90102bf703</cites><orcidid>0000-0003-2475-0589 ; 0000-0001-9076-5485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chu, Yen-Lin</creatorcontrib><creatorcontrib>Ji, Liang-Wen</creatorcontrib><creatorcontrib>Xie, Jun-Hong</creatorcontrib><creatorcontrib>Chu, Tung-Te</creatorcontrib><title>High-Sensitivity of Self-Powered Gas Sensors Based on Piezoelectric Nanogenerators With Y-Doped 1-D ZnO Nanostructures</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this work, yttrium-doped zinc oxide (Y-doped ZnO) nanorod (NR) arrays were grown using a simple facile hydrothermal solution route at low temperature to fabricate a self-powered gas sensor based on piezoelectric nanogenerator (PENG). The material properties of the 1-D NR arrays were observed using a field-emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX), an X-ray diffraction (XRD), and a high-resolution transmission electron microscope (HR-TEM). The Y-doping concentration in the ZnO NRs was estimated to be 0.96 at%. Photoluminescence (PL) analysis was used to analyze the distribution of oxygen defects in the nanostructures. The Y-doped ZnO NRs were grown onto the bottom substrate and indium-tin-oxide polyethylene terephthalate (ITO-PET) substrates with silver (Ag) electrode were used as the top electrode to fabricate the PENG device. By introducing regular frequency mechanical external forces through a home-made impact system, the ZnO NRs of PENG devices generate piezoelectric effects, then the output electrical characteristics of PENGs were measured. It can be seen that the NRs with a Y-doping concentration of 7.5 mM showed a significant change in output voltage and current when exposed to carbon monoxide (CO) gas. Meanwhile, the Y:ZnO PENGs revealed remarkable sensitivity (58%) in 150 ppm CO environment. As a result, it was seen that such a device exhibited a self-powering characteristic and a significant sensitivity to CO gas. In the future, the device can also be combined with the Internet of Things (IoTs) for CO gas detection (e.g., portable gas sensors).</description><subject>1-D nanorods (NRs)</subject><subject>Arrays</subject><subject>Carbon monoxide</subject><subject>carbon monoxide (CO) gas</subject><subject>Doping</subject><subject>Electrodes</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Gas detectors</subject><subject>Gas sensors</subject><subject>hydrothermal route</subject><subject>II-VI semiconductor materials</subject><subject>Indium tin oxides</subject><subject>Internet of Things</subject><subject>Low temperature</subject><subject>Material properties</subject><subject>Nanogenerators</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Photoluminescence</subject><subject>piezoelectric nanogenerator (PENG)</subject><subject>Piezoelectricity</subject><subject>Polyethylene terephthalate</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silver</subject><subject>Substrates</subject><subject>Yttrium</subject><subject>yttrium dopant (Y-doped)</subject><subject>Zinc</subject><subject>Zinc oxide</subject><subject>zinc oxide (ZnO)</subject><subject>Zinc oxides</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhjdGExH9ASYemngu9mO7H0dFBA0BEjR-XDa73SmU4BbbLgZ_vbvCwdNMZp53JnmC4JKSHqUkvXmaDyY9RljY4zxJU06Pgg4VIsE0DpPjtucEhzx-Ow3OnFsRQtNYxJ1gO9KLJZ5D5bTXW-13yCg0h7XCM_MNFko0zB1q98Y6dJe7ZmIqNNPwY2AN0lst0SSvzAIqsLlvqVftl-gd35tNA1N8jz6q6R_jvK2lry248-BE5WsHF4faDV4eBs_9ER5Ph4_92zGWLA09jkCmoIATLsuUK5XLAiTnURIpxRjnZSSSQrAkBh6HuUgEKcOCFSmhhBUqJrwbXO_vbqz5qsH5bGVqWzUvM06ihMYRobSh6J6S1jhnQWUbqz9zu8soyVq9Was3a_VmB71N5mqf0QDwjxeMhoLxX9i1dy4</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Chu, Yen-Lin</creator><creator>Ji, Liang-Wen</creator><creator>Xie, Jun-Hong</creator><creator>Chu, Tung-Te</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2475-0589</orcidid><orcidid>https://orcid.org/0000-0001-9076-5485</orcidid></search><sort><creationdate>20240615</creationdate><title>High-Sensitivity of Self-Powered Gas Sensors Based on Piezoelectric Nanogenerators With Y-Doped 1-D ZnO Nanostructures</title><author>Chu, Yen-Lin ; Ji, Liang-Wen ; Xie, Jun-Hong ; Chu, Tung-Te</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-6ec9efe303cd93ffacbec33686ff2233d658b5287e374a5850d4b2b90102bf703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-D nanorods (NRs)</topic><topic>Arrays</topic><topic>Carbon monoxide</topic><topic>carbon monoxide (CO) gas</topic><topic>Doping</topic><topic>Electrodes</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Gas detectors</topic><topic>Gas sensors</topic><topic>hydrothermal route</topic><topic>II-VI semiconductor materials</topic><topic>Indium tin oxides</topic><topic>Internet of Things</topic><topic>Low temperature</topic><topic>Material properties</topic><topic>Nanogenerators</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Photoluminescence</topic><topic>piezoelectric nanogenerator (PENG)</topic><topic>Piezoelectricity</topic><topic>Polyethylene terephthalate</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silver</topic><topic>Substrates</topic><topic>Yttrium</topic><topic>yttrium dopant (Y-doped)</topic><topic>Zinc</topic><topic>Zinc oxide</topic><topic>zinc oxide (ZnO)</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yen-Lin</creatorcontrib><creatorcontrib>Ji, Liang-Wen</creatorcontrib><creatorcontrib>Xie, Jun-Hong</creatorcontrib><creatorcontrib>Chu, Tung-Te</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, Yen-Lin</au><au>Ji, Liang-Wen</au><au>Xie, Jun-Hong</au><au>Chu, Tung-Te</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Sensitivity of Self-Powered Gas Sensors Based on Piezoelectric Nanogenerators With Y-Doped 1-D ZnO Nanostructures</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-06-15</date><risdate>2024</risdate><volume>24</volume><issue>12</issue><spage>18731</spage><epage>18739</epage><pages>18731-18739</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this work, yttrium-doped zinc oxide (Y-doped ZnO) nanorod (NR) arrays were grown using a simple facile hydrothermal solution route at low temperature to fabricate a self-powered gas sensor based on piezoelectric nanogenerator (PENG). The material properties of the 1-D NR arrays were observed using a field-emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX), an X-ray diffraction (XRD), and a high-resolution transmission electron microscope (HR-TEM). The Y-doping concentration in the ZnO NRs was estimated to be 0.96 at%. Photoluminescence (PL) analysis was used to analyze the distribution of oxygen defects in the nanostructures. The Y-doped ZnO NRs were grown onto the bottom substrate and indium-tin-oxide polyethylene terephthalate (ITO-PET) substrates with silver (Ag) electrode were used as the top electrode to fabricate the PENG device. By introducing regular frequency mechanical external forces through a home-made impact system, the ZnO NRs of PENG devices generate piezoelectric effects, then the output electrical characteristics of PENGs were measured. It can be seen that the NRs with a Y-doping concentration of 7.5 mM showed a significant change in output voltage and current when exposed to carbon monoxide (CO) gas. Meanwhile, the Y:ZnO PENGs revealed remarkable sensitivity (58%) in 150 ppm CO environment. As a result, it was seen that such a device exhibited a self-powering characteristic and a significant sensitivity to CO gas. In the future, the device can also be combined with the Internet of Things (IoTs) for CO gas detection (e.g., portable gas sensors).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3389931</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2475-0589</orcidid><orcidid>https://orcid.org/0000-0001-9076-5485</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-06, Vol.24 (12), p.18731-18739 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3068176011 |
source | IEEE Electronic Library (IEL) |
subjects | 1-D nanorods (NRs) Arrays Carbon monoxide carbon monoxide (CO) gas Doping Electrodes Electron microscopes Electron microscopy Gas detectors Gas sensors hydrothermal route II-VI semiconductor materials Indium tin oxides Internet of Things Low temperature Material properties Nanogenerators Nanorods Nanostructure Nanostructures Photoluminescence piezoelectric nanogenerator (PENG) Piezoelectricity Polyethylene terephthalate Sensitivity Sensors Silver Substrates Yttrium yttrium dopant (Y-doped) Zinc Zinc oxide zinc oxide (ZnO) Zinc oxides |
title | High-Sensitivity of Self-Powered Gas Sensors Based on Piezoelectric Nanogenerators With Y-Doped 1-D ZnO Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Sensitivity%20of%20Self-Powered%20Gas%20Sensors%20Based%20on%20Piezoelectric%20Nanogenerators%20With%20Y-Doped%201-D%20ZnO%20Nanostructures&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chu,%20Yen-Lin&rft.date=2024-06-15&rft.volume=24&rft.issue=12&rft.spage=18731&rft.epage=18739&rft.pages=18731-18739&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3389931&rft_dat=%3Cproquest_RIE%3E3068176011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068176011&rft_id=info:pmid/&rft_ieee_id=10521452&rfr_iscdi=true |