Observing System Simulation Experiments (OSSEs) in Support of Next-Generation NOAA Satellite Constellation

Between 2014 and 2018, the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by observi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2024-06, Vol.105 (6), p.E884-E904
Hauptverfasser: Cucurull, Lidia, Anthes, Richard A, Casey, Sean P.F, Mueller, Michael J, Vidal, Andres
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E904
container_issue 6
container_start_page E884
container_title Bulletin of the American Meteorological Society
container_volume 105
creator Cucurull, Lidia
Anthes, Richard A
Casey, Sean P.F
Mueller, Michael J
Vidal, Andres
description Between 2014 and 2018, the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by observing system simulation experiments (OSSEs). This paper describes a series of OSSEs in which benefits to numerical weather prediction from existing observing systems are combined with enhancements from potential future capabilities. Assessments include the relative value of the quantity of different types of thermodynamic soundings for global numerical weather applications. We compare the relative impact of several sounding configuration scenarios for infrared (IR), microwave (MW), and radio occultation (RO) observing capabilities. The main results are 1) increasing the revisit rate for satellite radiance soundings produces the largest benefits but at a significant cost by requiring an increase in the number of polar-orbiting satellites from 2 to 12; 2) a large positive impact is found when the number of RO soundings per day is increased well beyond current values and other observations are held at current levels of performance; 3) RO can be used as a mitigation strategy for lower MW/IR sounding revisit rates, particularly in the tropics; and 4) smaller benefits result from increasing the horizontal resolution along the track of the satellites of MW/IR satellite radiances. Furthermore, disaggregating IR and MW instruments into six evenly distributed sun-synchronous orbits is slightly more beneficial than when the same instruments are combined and collocated on three separate orbits.
doi_str_mv 10.1175/BAMS-D-23-0060.1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067849526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803365668</galeid><sourcerecordid>A803365668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-36085bd5fbebd6c4a05f35db40772ea8de4df84d0f25481eacacbb274d53b4b63</originalsourceid><addsrcrecordid>eNptkkFv3CAQhVHVSt0mufeI1EtzIMEGbPfobrZppCQr1ekZYXtYsbLBBVwl_74420NWWnEAZr7HaIaH0OeMXmVZKa6_1w8NuSE5I5QWKfYOrTKRU0J5Wb5HK0rpkqHlR_QphP1yZVW2QvttG8D_NXaHm5cQYcSNGedBReMs3jxP4M0INgb8dds0m3CJjcXNPE3OR-w0foTnSG7Bgj8oHrd1jRsVYRhMBLx2Nizn1-Q5-qDVEODi_36Gfv_YPK1_kvvt7d26vicdpyISVtBKtL3QLbR90XFFhWaibzktyxxU1QPvdcV7qnPBqwxUp7q2zUveC9bytmBn6Mvh3cm7PzOEKPdu9jaVlIwWZcW_ifwNtVMDSGO1i151owmdrKs0nEIURZUocoLavTY8OAvapPARf3WCT6uH0XQnBZdHgsTENNOdmkOQd82vY5Ye2M67EDxoOaXfUf5FZlQuJpCLCeSNzJlcTCAz9g92S6M7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067849526</pqid></control><display><type>article</type><title>Observing System Simulation Experiments (OSSEs) in Support of Next-Generation NOAA Satellite Constellation</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cucurull, Lidia ; Anthes, Richard A ; Casey, Sean P.F ; Mueller, Michael J ; Vidal, Andres</creator><creatorcontrib>Cucurull, Lidia ; Anthes, Richard A ; Casey, Sean P.F ; Mueller, Michael J ; Vidal, Andres</creatorcontrib><description>Between 2014 and 2018, the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by observing system simulation experiments (OSSEs). This paper describes a series of OSSEs in which benefits to numerical weather prediction from existing observing systems are combined with enhancements from potential future capabilities. Assessments include the relative value of the quantity of different types of thermodynamic soundings for global numerical weather applications. We compare the relative impact of several sounding configuration scenarios for infrared (IR), microwave (MW), and radio occultation (RO) observing capabilities. The main results are 1) increasing the revisit rate for satellite radiance soundings produces the largest benefits but at a significant cost by requiring an increase in the number of polar-orbiting satellites from 2 to 12; 2) a large positive impact is found when the number of RO soundings per day is increased well beyond current values and other observations are held at current levels of performance; 3) RO can be used as a mitigation strategy for lower MW/IR sounding revisit rates, particularly in the tropics; and 4) smaller benefits result from increasing the horizontal resolution along the track of the satellites of MW/IR satellite radiances. Furthermore, disaggregating IR and MW instruments into six evenly distributed sun-synchronous orbits is slightly more beneficial than when the same instruments are combined and collocated on three separate orbits.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-23-0060.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Accuracy ; Artificial satellites ; Data assimilation ; Design and construction ; Experiments ; Global weather ; Meteorological satellites ; Mitigation ; NOAA satellites ; Numerical weather forecasting ; Polar orbiting satellites ; Radiance ; Radio occultation ; Satellite constellations ; Satellite observation ; Satellite tracking ; Satellites ; Simulation methods ; Sounding ; Sun-synchronous orbits ; Technology application ; Thermodynamics ; Tropical environments ; User needs ; Weather ; Weather forecasting</subject><ispartof>Bulletin of the American Meteorological Society, 2024-06, Vol.105 (6), p.E884-E904</ispartof><rights>COPYRIGHT 2024 American Meteorological Society</rights><rights>Copyright American Meteorological Society 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0277-6729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Cucurull, Lidia</creatorcontrib><creatorcontrib>Anthes, Richard A</creatorcontrib><creatorcontrib>Casey, Sean P.F</creatorcontrib><creatorcontrib>Mueller, Michael J</creatorcontrib><creatorcontrib>Vidal, Andres</creatorcontrib><title>Observing System Simulation Experiments (OSSEs) in Support of Next-Generation NOAA Satellite Constellation</title><title>Bulletin of the American Meteorological Society</title><description>Between 2014 and 2018, the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by observing system simulation experiments (OSSEs). This paper describes a series of OSSEs in which benefits to numerical weather prediction from existing observing systems are combined with enhancements from potential future capabilities. Assessments include the relative value of the quantity of different types of thermodynamic soundings for global numerical weather applications. We compare the relative impact of several sounding configuration scenarios for infrared (IR), microwave (MW), and radio occultation (RO) observing capabilities. The main results are 1) increasing the revisit rate for satellite radiance soundings produces the largest benefits but at a significant cost by requiring an increase in the number of polar-orbiting satellites from 2 to 12; 2) a large positive impact is found when the number of RO soundings per day is increased well beyond current values and other observations are held at current levels of performance; 3) RO can be used as a mitigation strategy for lower MW/IR sounding revisit rates, particularly in the tropics; and 4) smaller benefits result from increasing the horizontal resolution along the track of the satellites of MW/IR satellite radiances. Furthermore, disaggregating IR and MW instruments into six evenly distributed sun-synchronous orbits is slightly more beneficial than when the same instruments are combined and collocated on three separate orbits.</description><subject>Accuracy</subject><subject>Artificial satellites</subject><subject>Data assimilation</subject><subject>Design and construction</subject><subject>Experiments</subject><subject>Global weather</subject><subject>Meteorological satellites</subject><subject>Mitigation</subject><subject>NOAA satellites</subject><subject>Numerical weather forecasting</subject><subject>Polar orbiting satellites</subject><subject>Radiance</subject><subject>Radio occultation</subject><subject>Satellite constellations</subject><subject>Satellite observation</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Simulation methods</subject><subject>Sounding</subject><subject>Sun-synchronous orbits</subject><subject>Technology application</subject><subject>Thermodynamics</subject><subject>Tropical environments</subject><subject>User needs</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkkFv3CAQhVHVSt0mufeI1EtzIMEGbPfobrZppCQr1ekZYXtYsbLBBVwl_74420NWWnEAZr7HaIaH0OeMXmVZKa6_1w8NuSE5I5QWKfYOrTKRU0J5Wb5HK0rpkqHlR_QphP1yZVW2QvttG8D_NXaHm5cQYcSNGedBReMs3jxP4M0INgb8dds0m3CJjcXNPE3OR-w0foTnSG7Bgj8oHrd1jRsVYRhMBLx2Nizn1-Q5-qDVEODi_36Gfv_YPK1_kvvt7d26vicdpyISVtBKtL3QLbR90XFFhWaibzktyxxU1QPvdcV7qnPBqwxUp7q2zUveC9bytmBn6Mvh3cm7PzOEKPdu9jaVlIwWZcW_ifwNtVMDSGO1i151owmdrKs0nEIURZUocoLavTY8OAvapPARf3WCT6uH0XQnBZdHgsTENNOdmkOQd82vY5Ye2M67EDxoOaXfUf5FZlQuJpCLCeSNzJlcTCAz9g92S6M7</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Cucurull, Lidia</creator><creator>Anthes, Richard A</creator><creator>Casey, Sean P.F</creator><creator>Mueller, Michael J</creator><creator>Vidal, Andres</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-0277-6729</orcidid></search><sort><creationdate>20240601</creationdate><title>Observing System Simulation Experiments (OSSEs) in Support of Next-Generation NOAA Satellite Constellation</title><author>Cucurull, Lidia ; Anthes, Richard A ; Casey, Sean P.F ; Mueller, Michael J ; Vidal, Andres</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-36085bd5fbebd6c4a05f35db40772ea8de4df84d0f25481eacacbb274d53b4b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial satellites</topic><topic>Data assimilation</topic><topic>Design and construction</topic><topic>Experiments</topic><topic>Global weather</topic><topic>Meteorological satellites</topic><topic>Mitigation</topic><topic>NOAA satellites</topic><topic>Numerical weather forecasting</topic><topic>Polar orbiting satellites</topic><topic>Radiance</topic><topic>Radio occultation</topic><topic>Satellite constellations</topic><topic>Satellite observation</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Simulation methods</topic><topic>Sounding</topic><topic>Sun-synchronous orbits</topic><topic>Technology application</topic><topic>Thermodynamics</topic><topic>Tropical environments</topic><topic>User needs</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cucurull, Lidia</creatorcontrib><creatorcontrib>Anthes, Richard A</creatorcontrib><creatorcontrib>Casey, Sean P.F</creatorcontrib><creatorcontrib>Mueller, Michael J</creatorcontrib><creatorcontrib>Vidal, Andres</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cucurull, Lidia</au><au>Anthes, Richard A</au><au>Casey, Sean P.F</au><au>Mueller, Michael J</au><au>Vidal, Andres</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing System Simulation Experiments (OSSEs) in Support of Next-Generation NOAA Satellite Constellation</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>105</volume><issue>6</issue><spage>E884</spage><epage>E904</epage><pages>E884-E904</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>Between 2014 and 2018, the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by observing system simulation experiments (OSSEs). This paper describes a series of OSSEs in which benefits to numerical weather prediction from existing observing systems are combined with enhancements from potential future capabilities. Assessments include the relative value of the quantity of different types of thermodynamic soundings for global numerical weather applications. We compare the relative impact of several sounding configuration scenarios for infrared (IR), microwave (MW), and radio occultation (RO) observing capabilities. The main results are 1) increasing the revisit rate for satellite radiance soundings produces the largest benefits but at a significant cost by requiring an increase in the number of polar-orbiting satellites from 2 to 12; 2) a large positive impact is found when the number of RO soundings per day is increased well beyond current values and other observations are held at current levels of performance; 3) RO can be used as a mitigation strategy for lower MW/IR sounding revisit rates, particularly in the tropics; and 4) smaller benefits result from increasing the horizontal resolution along the track of the satellites of MW/IR satellite radiances. Furthermore, disaggregating IR and MW instruments into six evenly distributed sun-synchronous orbits is slightly more beneficial than when the same instruments are combined and collocated on three separate orbits.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-23-0060.1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0277-6729</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2024-06, Vol.105 (6), p.E884-E904
issn 0003-0007
1520-0477
language eng
recordid cdi_proquest_journals_3067849526
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Artificial satellites
Data assimilation
Design and construction
Experiments
Global weather
Meteorological satellites
Mitigation
NOAA satellites
Numerical weather forecasting
Polar orbiting satellites
Radiance
Radio occultation
Satellite constellations
Satellite observation
Satellite tracking
Satellites
Simulation methods
Sounding
Sun-synchronous orbits
Technology application
Thermodynamics
Tropical environments
User needs
Weather
Weather forecasting
title Observing System Simulation Experiments (OSSEs) in Support of Next-Generation NOAA Satellite Constellation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20System%20Simulation%20Experiments%20(OSSEs)%20in%20Support%20of%20Next-Generation%20NOAA%20Satellite%20Constellation&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Cucurull,%20Lidia&rft.date=2024-06-01&rft.volume=105&rft.issue=6&rft.spage=E884&rft.epage=E904&rft.pages=E884-E904&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-23-0060.1&rft_dat=%3Cgale_proqu%3EA803365668%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067849526&rft_id=info:pmid/&rft_galeid=A803365668&rfr_iscdi=true