Yellow jacket (gilet jaune CHA): an analysis throughout Python dictionaries and media theory
This paper presents an analysis of the French social movement of the gilet jaune (yellow vests, YV) in three parts. The first part focuses on observing and identifying the importance of web content, influencers and users. From the observation of discontent (colère,anger at French), representative wo...
Gespeichert in:
Veröffentlicht in: | International Journal of Combinatorial Optimization Problems and Informatics 2022-01, Vol.13 (1), p.18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | International Journal of Combinatorial Optimization Problems and Informatics |
container_volume | 13 |
creator | Bernábe-Loranca, Maria Beatriz Reyes-Monreal, Marleni Alberto José Luís Carrillo-Canán Duque-Cardona, Juan Carlos Martínez-Guzmán, Gerardo |
description | This paper presents an analysis of the French social movement of the gilet jaune (yellow vests, YV) in three parts. The first part focuses on observing and identifying the importance of web content, influencers and users. From the observation of discontent (colère,anger at French), representative words of the movement were identified and stored in an arrangement (array_1). The second part takes the information generated in the first part to perform an analysis of the contents of the social network Twitter through natural language processing (NLP) to identify new adjectives or highlight concepts already observed in array_1 for the creation of a dictionary. The third and last part builds the array_2, which contains words resulting from an enumerative search of adjectives on the news website FranceInfo. In this work, a graphic mapping was generated on the number of times and correlations in which a word is linked with other words that describe a YV movement. For this purpose, the content proposed in array_1 and the content of array_2 were considered in their entirety. Both the NLP dictionaries and the two arrays match in a high percentage with the initial words, which implies that these three independent procedures allow us to compare the results and interpret the public's anger at the YV movement and its possible implications. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067838735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067838735</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-e46efc0f21795139dcbc46c31820408817297cfc92c3c68918e8368d2085814a3</originalsourceid><addsrcrecordid>eNotjsFKxDAURYMgOIzzDwE3uii8JE3z4m4o6ggDutCFIAwxTaeptRmbFOnfG9DLhbM5XO4ZWXEAVTAp8YJsYuwhBwGkhhV5f3PDEH5ob-ynS_T66IeM3syjo_Vue3NLzZhrhiX6SFM3hfnYhTnR5yV1YaSNt8mH0Uzexew19Ms13mTRhWm5JOetGaLb_HNNXu_vXupdsX96eKy3--LEmEiFKyvXWmg5U1oyoRv7YcvKCoYcSkBkimtlW6u5FbZCzdChqLDhgBJZacSaXP3tnqbwPbuYDn2Yp3w6HgRUCgUqIcUvi_FNwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067838735</pqid></control><display><type>article</type><title>Yellow jacket (gilet jaune CHA): an analysis throughout Python dictionaries and media theory</title><source>EZB Electronic Journals Library</source><creator>Bernábe-Loranca, Maria Beatriz ; Reyes-Monreal, Marleni ; Alberto José Luís Carrillo-Canán ; Duque-Cardona, Juan Carlos ; Martínez-Guzmán, Gerardo</creator><creatorcontrib>Bernábe-Loranca, Maria Beatriz ; Reyes-Monreal, Marleni ; Alberto José Luís Carrillo-Canán ; Duque-Cardona, Juan Carlos ; Martínez-Guzmán, Gerardo</creatorcontrib><description>This paper presents an analysis of the French social movement of the gilet jaune (yellow vests, YV) in three parts. The first part focuses on observing and identifying the importance of web content, influencers and users. From the observation of discontent (colère,anger at French), representative words of the movement were identified and stored in an arrangement (array_1). The second part takes the information generated in the first part to perform an analysis of the contents of the social network Twitter through natural language processing (NLP) to identify new adjectives or highlight concepts already observed in array_1 for the creation of a dictionary. The third and last part builds the array_2, which contains words resulting from an enumerative search of adjectives on the news website FranceInfo. In this work, a graphic mapping was generated on the number of times and correlations in which a word is linked with other words that describe a YV movement. For this purpose, the content proposed in array_1 and the content of array_2 were considered in their entirety. Both the NLP dictionaries and the two arrays match in a high percentage with the initial words, which implies that these three independent procedures allow us to compare the results and interpret the public's anger at the YV movement and its possible implications.</description><identifier>EISSN: 2007-1558</identifier><language>eng</language><publisher>Jiutepec: International Journal of Combinatorial Optimization Problems & Informatics</publisher><subject>Arrays ; Dictionaries ; Natural language processing ; Social networks ; Words (language)</subject><ispartof>International Journal of Combinatorial Optimization Problems and Informatics, 2022-01, Vol.13 (1), p.18</ispartof><rights>Copyright International Journal of Combinatorial Optimization Problems & Informatics 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Bernábe-Loranca, Maria Beatriz</creatorcontrib><creatorcontrib>Reyes-Monreal, Marleni</creatorcontrib><creatorcontrib>Alberto José Luís Carrillo-Canán</creatorcontrib><creatorcontrib>Duque-Cardona, Juan Carlos</creatorcontrib><creatorcontrib>Martínez-Guzmán, Gerardo</creatorcontrib><title>Yellow jacket (gilet jaune CHA): an analysis throughout Python dictionaries and media theory</title><title>International Journal of Combinatorial Optimization Problems and Informatics</title><description>This paper presents an analysis of the French social movement of the gilet jaune (yellow vests, YV) in three parts. The first part focuses on observing and identifying the importance of web content, influencers and users. From the observation of discontent (colère,anger at French), representative words of the movement were identified and stored in an arrangement (array_1). The second part takes the information generated in the first part to perform an analysis of the contents of the social network Twitter through natural language processing (NLP) to identify new adjectives or highlight concepts already observed in array_1 for the creation of a dictionary. The third and last part builds the array_2, which contains words resulting from an enumerative search of adjectives on the news website FranceInfo. In this work, a graphic mapping was generated on the number of times and correlations in which a word is linked with other words that describe a YV movement. For this purpose, the content proposed in array_1 and the content of array_2 were considered in their entirety. Both the NLP dictionaries and the two arrays match in a high percentage with the initial words, which implies that these three independent procedures allow us to compare the results and interpret the public's anger at the YV movement and its possible implications.</description><subject>Arrays</subject><subject>Dictionaries</subject><subject>Natural language processing</subject><subject>Social networks</subject><subject>Words (language)</subject><issn>2007-1558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjsFKxDAURYMgOIzzDwE3uii8JE3z4m4o6ggDutCFIAwxTaeptRmbFOnfG9DLhbM5XO4ZWXEAVTAp8YJsYuwhBwGkhhV5f3PDEH5ob-ynS_T66IeM3syjo_Vue3NLzZhrhiX6SFM3hfnYhTnR5yV1YaSNt8mH0Uzexew19Ms13mTRhWm5JOetGaLb_HNNXu_vXupdsX96eKy3--LEmEiFKyvXWmg5U1oyoRv7YcvKCoYcSkBkimtlW6u5FbZCzdChqLDhgBJZacSaXP3tnqbwPbuYDn2Yp3w6HgRUCgUqIcUvi_FNwg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Bernábe-Loranca, Maria Beatriz</creator><creator>Reyes-Monreal, Marleni</creator><creator>Alberto José Luís Carrillo-Canán</creator><creator>Duque-Cardona, Juan Carlos</creator><creator>Martínez-Guzmán, Gerardo</creator><general>International Journal of Combinatorial Optimization Problems & Informatics</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Yellow jacket (gilet jaune CHA): an analysis throughout Python dictionaries and media theory</title><author>Bernábe-Loranca, Maria Beatriz ; Reyes-Monreal, Marleni ; Alberto José Luís Carrillo-Canán ; Duque-Cardona, Juan Carlos ; Martínez-Guzmán, Gerardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-e46efc0f21795139dcbc46c31820408817297cfc92c3c68918e8368d2085814a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Dictionaries</topic><topic>Natural language processing</topic><topic>Social networks</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernábe-Loranca, Maria Beatriz</creatorcontrib><creatorcontrib>Reyes-Monreal, Marleni</creatorcontrib><creatorcontrib>Alberto José Luís Carrillo-Canán</creatorcontrib><creatorcontrib>Duque-Cardona, Juan Carlos</creatorcontrib><creatorcontrib>Martínez-Guzmán, Gerardo</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Latin America & Iberian Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International Journal of Combinatorial Optimization Problems and Informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernábe-Loranca, Maria Beatriz</au><au>Reyes-Monreal, Marleni</au><au>Alberto José Luís Carrillo-Canán</au><au>Duque-Cardona, Juan Carlos</au><au>Martínez-Guzmán, Gerardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yellow jacket (gilet jaune CHA): an analysis throughout Python dictionaries and media theory</atitle><jtitle>International Journal of Combinatorial Optimization Problems and Informatics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>18</spage><pages>18-</pages><eissn>2007-1558</eissn><abstract>This paper presents an analysis of the French social movement of the gilet jaune (yellow vests, YV) in three parts. The first part focuses on observing and identifying the importance of web content, influencers and users. From the observation of discontent (colère,anger at French), representative words of the movement were identified and stored in an arrangement (array_1). The second part takes the information generated in the first part to perform an analysis of the contents of the social network Twitter through natural language processing (NLP) to identify new adjectives or highlight concepts already observed in array_1 for the creation of a dictionary. The third and last part builds the array_2, which contains words resulting from an enumerative search of adjectives on the news website FranceInfo. In this work, a graphic mapping was generated on the number of times and correlations in which a word is linked with other words that describe a YV movement. For this purpose, the content proposed in array_1 and the content of array_2 were considered in their entirety. Both the NLP dictionaries and the two arrays match in a high percentage with the initial words, which implies that these three independent procedures allow us to compare the results and interpret the public's anger at the YV movement and its possible implications.</abstract><cop>Jiutepec</cop><pub>International Journal of Combinatorial Optimization Problems & Informatics</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2007-1558 |
ispartof | International Journal of Combinatorial Optimization Problems and Informatics, 2022-01, Vol.13 (1), p.18 |
issn | 2007-1558 |
language | eng |
recordid | cdi_proquest_journals_3067838735 |
source | EZB Electronic Journals Library |
subjects | Arrays Dictionaries Natural language processing Social networks Words (language) |
title | Yellow jacket (gilet jaune CHA): an analysis throughout Python dictionaries and media theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yellow%20jacket%20(gilet%20jaune%20CHA):%20an%20analysis%20throughout%20Python%20dictionaries%20and%20media%20theory&rft.jtitle=International%20Journal%20of%20Combinatorial%20Optimization%20Problems%20and%20Informatics&rft.au=Bern%C3%A1be-Loranca,%20Maria%20Beatriz&rft.date=2022-01-01&rft.volume=13&rft.issue=1&rft.spage=18&rft.pages=18-&rft.eissn=2007-1558&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067838735%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067838735&rft_id=info:pmid/&rfr_iscdi=true |