Real-world Image Dehazing with Coherence-based Pseudo Labeling and Cooperative Unfolding Network
Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooper...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fang, Chengyu He, Chunming Xiao, Fengyang Zhang, Yulun Tang, Longxiang Zhang, Yuelin Li, Kai Li, Xiu |
description | Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at \url{https://github.com/cnyvfang/CORUN-Colabator}. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067555069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067555069</sourcerecordid><originalsourceid>FETCH-proquest_journals_30675550693</originalsourceid><addsrcrecordid>eNqNzE0KwjAYRdEgCBbtHgKOCzExrY6roiAiouOamq9_xqQmrQVXbwUX4OgN7uENkEcZmwWLOaUj5DtXEUJoGFHOmYeuJxAq6IxVEu8eIge8gkK8S53jrmwKHJsCLOgbBKlwIPHRQSsN3osU1BcJLXtjarCiKV-ALzozSn7LAZr-9j5Bw0woB_5vx2i6WZ_jbVBb82zBNUllWqv7lDASRpxzEi7Zf-oDtSBErQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067555069</pqid></control><display><type>article</type><title>Real-world Image Dehazing with Coherence-based Pseudo Labeling and Cooperative Unfolding Network</title><source>Free E- Journals</source><creator>Fang, Chengyu ; He, Chunming ; Xiao, Fengyang ; Zhang, Yulun ; Tang, Longxiang ; Zhang, Yuelin ; Li, Kai ; Li, Xiu</creator><creatorcontrib>Fang, Chengyu ; He, Chunming ; Xiao, Fengyang ; Zhang, Yulun ; Tang, Longxiang ; Zhang, Yuelin ; Li, Kai ; Li, Xiu</creatorcontrib><description>Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at \url{https://github.com/cnyvfang/CORUN-Colabator}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atmospheric scattering ; Coherence ; Haze ; Image restoration ; Labels</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Fang, Chengyu</creatorcontrib><creatorcontrib>He, Chunming</creatorcontrib><creatorcontrib>Xiao, Fengyang</creatorcontrib><creatorcontrib>Zhang, Yulun</creatorcontrib><creatorcontrib>Tang, Longxiang</creatorcontrib><creatorcontrib>Zhang, Yuelin</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Li, Xiu</creatorcontrib><title>Real-world Image Dehazing with Coherence-based Pseudo Labeling and Cooperative Unfolding Network</title><title>arXiv.org</title><description>Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at \url{https://github.com/cnyvfang/CORUN-Colabator}.</description><subject>Atmospheric scattering</subject><subject>Coherence</subject><subject>Haze</subject><subject>Image restoration</subject><subject>Labels</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzE0KwjAYRdEgCBbtHgKOCzExrY6roiAiouOamq9_xqQmrQVXbwUX4OgN7uENkEcZmwWLOaUj5DtXEUJoGFHOmYeuJxAq6IxVEu8eIge8gkK8S53jrmwKHJsCLOgbBKlwIPHRQSsN3osU1BcJLXtjarCiKV-ALzozSn7LAZr-9j5Bw0woB_5vx2i6WZ_jbVBb82zBNUllWqv7lDASRpxzEi7Zf-oDtSBErQ</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Fang, Chengyu</creator><creator>He, Chunming</creator><creator>Xiao, Fengyang</creator><creator>Zhang, Yulun</creator><creator>Tang, Longxiang</creator><creator>Zhang, Yuelin</creator><creator>Li, Kai</creator><creator>Li, Xiu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241223</creationdate><title>Real-world Image Dehazing with Coherence-based Pseudo Labeling and Cooperative Unfolding Network</title><author>Fang, Chengyu ; He, Chunming ; Xiao, Fengyang ; Zhang, Yulun ; Tang, Longxiang ; Zhang, Yuelin ; Li, Kai ; Li, Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30675550693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric scattering</topic><topic>Coherence</topic><topic>Haze</topic><topic>Image restoration</topic><topic>Labels</topic><toplevel>online_resources</toplevel><creatorcontrib>Fang, Chengyu</creatorcontrib><creatorcontrib>He, Chunming</creatorcontrib><creatorcontrib>Xiao, Fengyang</creatorcontrib><creatorcontrib>Zhang, Yulun</creatorcontrib><creatorcontrib>Tang, Longxiang</creatorcontrib><creatorcontrib>Zhang, Yuelin</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Li, Xiu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Chengyu</au><au>He, Chunming</au><au>Xiao, Fengyang</au><au>Zhang, Yulun</au><au>Tang, Longxiang</au><au>Zhang, Yuelin</au><au>Li, Kai</au><au>Li, Xiu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Real-world Image Dehazing with Coherence-based Pseudo Labeling and Cooperative Unfolding Network</atitle><jtitle>arXiv.org</jtitle><date>2024-12-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at \url{https://github.com/cnyvfang/CORUN-Colabator}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3067555069 |
source | Free E- Journals |
subjects | Atmospheric scattering Coherence Haze Image restoration Labels |
title | Real-world Image Dehazing with Coherence-based Pseudo Labeling and Cooperative Unfolding Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Real-world%20Image%20Dehazing%20with%20Coherence-based%20Pseudo%20Labeling%20and%20Cooperative%20Unfolding%20Network&rft.jtitle=arXiv.org&rft.au=Fang,%20Chengyu&rft.date=2024-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067555069%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067555069&rft_id=info:pmid/&rfr_iscdi=true |