CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence
Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alam, Md Tanvirul Bhusal, Dipkamal Nguyen, Le Rastogi, Nidhi |
description | Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067554435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067554435</sourcerecordid><originalsourceid>FETCH-proquest_journals_30675544353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcw7xdErNS86wUnBUADNyE4uyFdLyixRcyxJzShNLMvPSFXx8fIsVMvMUnCuTUosUQjKKUhNLFDzzSlJzcjLTgZpSeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjAzNzU1MTE2NSYOFUA3PM5uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067554435</pqid></control><display><type>article</type><title>CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence</title><source>Free E- Journals</source><creator>Alam, Md Tanvirul ; Bhusal, Dipkamal ; Nguyen, Le ; Rastogi, Nidhi</creator><creatorcontrib>Alam, Md Tanvirul ; Bhusal, Dipkamal ; Nguyen, Le ; Rastogi, Nidhi</creatorcontrib><description>Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Cybersecurity ; Intelligence gathering ; Large language models ; Threat evaluation</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Alam, Md Tanvirul</creatorcontrib><creatorcontrib>Bhusal, Dipkamal</creatorcontrib><creatorcontrib>Nguyen, Le</creatorcontrib><creatorcontrib>Rastogi, Nidhi</creatorcontrib><title>CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence</title><title>arXiv.org</title><description>Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.</description><subject>Benchmarks</subject><subject>Cybersecurity</subject><subject>Intelligence gathering</subject><subject>Large language models</subject><subject>Threat evaluation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcw7xdErNS86wUnBUADNyE4uyFdLyixRcyxJzShNLMvPSFXx8fIsVMvMUnCuTUosUQjKKUhNLFDzzSlJzcjLTgZpSeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjAzNzU1MTE2NSYOFUA3PM5uw</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Alam, Md Tanvirul</creator><creator>Bhusal, Dipkamal</creator><creator>Nguyen, Le</creator><creator>Rastogi, Nidhi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241111</creationdate><title>CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence</title><author>Alam, Md Tanvirul ; Bhusal, Dipkamal ; Nguyen, Le ; Rastogi, Nidhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30675544353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Cybersecurity</topic><topic>Intelligence gathering</topic><topic>Large language models</topic><topic>Threat evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Alam, Md Tanvirul</creatorcontrib><creatorcontrib>Bhusal, Dipkamal</creatorcontrib><creatorcontrib>Nguyen, Le</creatorcontrib><creatorcontrib>Rastogi, Nidhi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Md Tanvirul</au><au>Bhusal, Dipkamal</au><au>Nguyen, Le</au><au>Rastogi, Nidhi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence</atitle><jtitle>arXiv.org</jtitle><date>2024-11-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3067554435 |
source | Free E- Journals |
subjects | Benchmarks Cybersecurity Intelligence gathering Large language models Threat evaluation |
title | CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CTIBench:%20A%20Benchmark%20for%20Evaluating%20LLMs%20in%20Cyber%20Threat%20Intelligence&rft.jtitle=arXiv.org&rft.au=Alam,%20Md%20Tanvirul&rft.date=2024-11-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067554435%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067554435&rft_id=info:pmid/&rfr_iscdi=true |