CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence

Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Alam, Md Tanvirul, Bhusal, Dipkamal, Nguyen, Le, Rastogi, Nidhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alam, Md Tanvirul
Bhusal, Dipkamal
Nguyen, Le
Rastogi, Nidhi
description Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067554435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067554435</sourcerecordid><originalsourceid>FETCH-proquest_journals_30675544353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcw7xdErNS86wUnBUADNyE4uyFdLyixRcyxJzShNLMvPSFXx8fIsVMvMUnCuTUosUQjKKUhNLFDzzSlJzcjLTgZpSeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjAzNzU1MTE2NSYOFUA3PM5uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067554435</pqid></control><display><type>article</type><title>CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence</title><source>Free E- Journals</source><creator>Alam, Md Tanvirul ; Bhusal, Dipkamal ; Nguyen, Le ; Rastogi, Nidhi</creator><creatorcontrib>Alam, Md Tanvirul ; Bhusal, Dipkamal ; Nguyen, Le ; Rastogi, Nidhi</creatorcontrib><description>Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Cybersecurity ; Intelligence gathering ; Large language models ; Threat evaluation</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Alam, Md Tanvirul</creatorcontrib><creatorcontrib>Bhusal, Dipkamal</creatorcontrib><creatorcontrib>Nguyen, Le</creatorcontrib><creatorcontrib>Rastogi, Nidhi</creatorcontrib><title>CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence</title><title>arXiv.org</title><description>Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.</description><subject>Benchmarks</subject><subject>Cybersecurity</subject><subject>Intelligence gathering</subject><subject>Large language models</subject><subject>Threat evaluation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcw7xdErNS86wUnBUADNyE4uyFdLyixRcyxJzShNLMvPSFXx8fIsVMvMUnCuTUosUQjKKUhNLFDzzSlJzcjLTgZpSeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjAzNzU1MTE2NSYOFUA3PM5uw</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Alam, Md Tanvirul</creator><creator>Bhusal, Dipkamal</creator><creator>Nguyen, Le</creator><creator>Rastogi, Nidhi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241111</creationdate><title>CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence</title><author>Alam, Md Tanvirul ; Bhusal, Dipkamal ; Nguyen, Le ; Rastogi, Nidhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30675544353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Cybersecurity</topic><topic>Intelligence gathering</topic><topic>Large language models</topic><topic>Threat evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Alam, Md Tanvirul</creatorcontrib><creatorcontrib>Bhusal, Dipkamal</creatorcontrib><creatorcontrib>Nguyen, Le</creatorcontrib><creatorcontrib>Rastogi, Nidhi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Md Tanvirul</au><au>Bhusal, Dipkamal</au><au>Nguyen, Le</au><au>Rastogi, Nidhi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence</atitle><jtitle>arXiv.org</jtitle><date>2024-11-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3067554435
source Free E- Journals
subjects Benchmarks
Cybersecurity
Intelligence gathering
Large language models
Threat evaluation
title CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CTIBench:%20A%20Benchmark%20for%20Evaluating%20LLMs%20in%20Cyber%20Threat%20Intelligence&rft.jtitle=arXiv.org&rft.au=Alam,%20Md%20Tanvirul&rft.date=2024-11-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067554435%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067554435&rft_id=info:pmid/&rfr_iscdi=true