Expressivity and Generalization: Fragment-Biases for Molecular GNNs

Although recent advances in higher-order Graph Neural Networks (GNNs) improve the theoretical expressiveness and molecular property predictive performance, they often fall short of the empirical performance of models that explicitly use fragment information as inductive bias. However, for these appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Wollschläger, Tom, Kemper, Niklas, Hetzel, Leon, Sommer, Johanna, Günnemann, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wollschläger, Tom
Kemper, Niklas
Hetzel, Leon
Sommer, Johanna
Günnemann, Stephan
description Although recent advances in higher-order Graph Neural Networks (GNNs) improve the theoretical expressiveness and molecular property predictive performance, they often fall short of the empirical performance of models that explicitly use fragment information as inductive bias. However, for these approaches, there exists no theoretic expressivity study. In this work, we propose the Fragment-WL test, an extension to the well-known Weisfeiler & Leman (WL) test, which enables the theoretic analysis of these fragment-biased GNNs. Building on the insights gained from the Fragment-WL test, we develop a new GNN architecture and a fragmentation with infinite vocabulary that significantly boosts expressiveness. We show the effectiveness of our model on synthetic and real-world data where we outperform all GNNs on Peptides and have 12% lower error than all GNNs on ZINC and 34% lower error than other fragment-biased models. Furthermore, we show that our model exhibits superior generalization capabilities compared to the latest transformer-based architectures, positioning it as a robust solution for a range of molecular modeling tasks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067542651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067542651</sourcerecordid><originalsourceid>FETCH-proquest_journals_30675426513</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hwadhbk5jY6J2iVP3WXYZ0zWZvtmVL--Dv2ATu_heRck4kKkyS7jfEVixJExxvOCSykiUlbPyQOifujwospeaAMWvDL6rYJ2dk9rr643sCE5aIWAdHCenpyBfjbK06ZtcUOWgzII8a9rsq2rc3lMJu_uM2DoRjd7-6VOsLyQGc9lKv67PgkAOhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067542651</pqid></control><display><type>article</type><title>Expressivity and Generalization: Fragment-Biases for Molecular GNNs</title><source>Free E- Journals</source><creator>Wollschläger, Tom ; Kemper, Niklas ; Hetzel, Leon ; Sommer, Johanna ; Günnemann, Stephan</creator><creatorcontrib>Wollschläger, Tom ; Kemper, Niklas ; Hetzel, Leon ; Sommer, Johanna ; Günnemann, Stephan</creatorcontrib><description>Although recent advances in higher-order Graph Neural Networks (GNNs) improve the theoretical expressiveness and molecular property predictive performance, they often fall short of the empirical performance of models that explicitly use fragment information as inductive bias. However, for these approaches, there exists no theoretic expressivity study. In this work, we propose the Fragment-WL test, an extension to the well-known Weisfeiler &amp; Leman (WL) test, which enables the theoretic analysis of these fragment-biased GNNs. Building on the insights gained from the Fragment-WL test, we develop a new GNN architecture and a fragmentation with infinite vocabulary that significantly boosts expressiveness. We show the effectiveness of our model on synthetic and real-world data where we outperform all GNNs on Peptides and have 12% lower error than all GNNs on ZINC and 34% lower error than other fragment-biased models. Furthermore, we show that our model exhibits superior generalization capabilities compared to the latest transformer-based architectures, positioning it as a robust solution for a range of molecular modeling tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Graph neural networks ; Molecular properties ; Peptides ; Performance prediction</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wollschläger, Tom</creatorcontrib><creatorcontrib>Kemper, Niklas</creatorcontrib><creatorcontrib>Hetzel, Leon</creatorcontrib><creatorcontrib>Sommer, Johanna</creatorcontrib><creatorcontrib>Günnemann, Stephan</creatorcontrib><title>Expressivity and Generalization: Fragment-Biases for Molecular GNNs</title><title>arXiv.org</title><description>Although recent advances in higher-order Graph Neural Networks (GNNs) improve the theoretical expressiveness and molecular property predictive performance, they often fall short of the empirical performance of models that explicitly use fragment information as inductive bias. However, for these approaches, there exists no theoretic expressivity study. In this work, we propose the Fragment-WL test, an extension to the well-known Weisfeiler &amp; Leman (WL) test, which enables the theoretic analysis of these fragment-biased GNNs. Building on the insights gained from the Fragment-WL test, we develop a new GNN architecture and a fragmentation with infinite vocabulary that significantly boosts expressiveness. We show the effectiveness of our model on synthetic and real-world data where we outperform all GNNs on Peptides and have 12% lower error than all GNNs on ZINC and 34% lower error than other fragment-biased models. Furthermore, we show that our model exhibits superior generalization capabilities compared to the latest transformer-based architectures, positioning it as a robust solution for a range of molecular modeling tasks.</description><subject>Bias</subject><subject>Graph neural networks</subject><subject>Molecular properties</subject><subject>Peptides</subject><subject>Performance prediction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5Hwadhbk5jY6J2iVP3WXYZ0zWZvtmVL--Dv2ATu_heRck4kKkyS7jfEVixJExxvOCSykiUlbPyQOifujwospeaAMWvDL6rYJ2dk9rr643sCE5aIWAdHCenpyBfjbK06ZtcUOWgzII8a9rsq2rc3lMJu_uM2DoRjd7-6VOsLyQGc9lKv67PgkAOhc</recordid><startdate>20240725</startdate><enddate>20240725</enddate><creator>Wollschläger, Tom</creator><creator>Kemper, Niklas</creator><creator>Hetzel, Leon</creator><creator>Sommer, Johanna</creator><creator>Günnemann, Stephan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240725</creationdate><title>Expressivity and Generalization: Fragment-Biases for Molecular GNNs</title><author>Wollschläger, Tom ; Kemper, Niklas ; Hetzel, Leon ; Sommer, Johanna ; Günnemann, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30675426513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Graph neural networks</topic><topic>Molecular properties</topic><topic>Peptides</topic><topic>Performance prediction</topic><toplevel>online_resources</toplevel><creatorcontrib>Wollschläger, Tom</creatorcontrib><creatorcontrib>Kemper, Niklas</creatorcontrib><creatorcontrib>Hetzel, Leon</creatorcontrib><creatorcontrib>Sommer, Johanna</creatorcontrib><creatorcontrib>Günnemann, Stephan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wollschläger, Tom</au><au>Kemper, Niklas</au><au>Hetzel, Leon</au><au>Sommer, Johanna</au><au>Günnemann, Stephan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Expressivity and Generalization: Fragment-Biases for Molecular GNNs</atitle><jtitle>arXiv.org</jtitle><date>2024-07-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Although recent advances in higher-order Graph Neural Networks (GNNs) improve the theoretical expressiveness and molecular property predictive performance, they often fall short of the empirical performance of models that explicitly use fragment information as inductive bias. However, for these approaches, there exists no theoretic expressivity study. In this work, we propose the Fragment-WL test, an extension to the well-known Weisfeiler &amp; Leman (WL) test, which enables the theoretic analysis of these fragment-biased GNNs. Building on the insights gained from the Fragment-WL test, we develop a new GNN architecture and a fragmentation with infinite vocabulary that significantly boosts expressiveness. We show the effectiveness of our model on synthetic and real-world data where we outperform all GNNs on Peptides and have 12% lower error than all GNNs on ZINC and 34% lower error than other fragment-biased models. Furthermore, we show that our model exhibits superior generalization capabilities compared to the latest transformer-based architectures, positioning it as a robust solution for a range of molecular modeling tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3067542651
source Free E- Journals
subjects Bias
Graph neural networks
Molecular properties
Peptides
Performance prediction
title Expressivity and Generalization: Fragment-Biases for Molecular GNNs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Expressivity%20and%20Generalization:%20Fragment-Biases%20for%20Molecular%20GNNs&rft.jtitle=arXiv.org&rft.au=Wollschl%C3%A4ger,%20Tom&rft.date=2024-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067542651%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067542651&rft_id=info:pmid/&rfr_iscdi=true