TORAX: A Fast and Differentiable Tokamak Transport Simulator in JAX

We present TORAX, a new, open-source, differentiable tokamak core transport simulator implemented in Python using the JAX framework. TORAX solves the coupled equations for ion heat transport, electron heat transport, particle transport, and current diffusion, incorporating modular physics-based and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Citrin, Jonathan, Goodfellow, Ian, Raju, Akhil, Chen, Jeremy, Degrave, Jonas, Donner, Craig, Felici, Federico, Hamel, Philippe, Huber, Andrea, Nikulin, Dmitry, Pfau, David, Tracey, Brendan, Riedmiller, Martin, Kohli, Pushmeet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Citrin, Jonathan
Goodfellow, Ian
Raju, Akhil
Chen, Jeremy
Degrave, Jonas
Donner, Craig
Felici, Federico
Hamel, Philippe
Huber, Andrea
Nikulin, Dmitry
Pfau, David
Tracey, Brendan
Riedmiller, Martin
Kohli, Pushmeet
description We present TORAX, a new, open-source, differentiable tokamak core transport simulator implemented in Python using the JAX framework. TORAX solves the coupled equations for ion heat transport, electron heat transport, particle transport, and current diffusion, incorporating modular physics-based and ML models. JAX's just-in-time compilation ensures fast runtimes, while its automatic differentiation capability enables gradient-based optimization workflows and simplifies the use of Jacobian-based PDE solvers. Coupling to ML-surrogates of physics models is greatly facilitated by JAX's intrinsic support for neural network development and inference. TORAX is verified against the established RAPTOR code, demonstrating agreement in simulated plasma profiles. TORAX provides a powerful and versatile tool for accelerating research in tokamak scenario modeling, pulse design, and control.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067539238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067539238</sourcerecordid><originalsourceid>FETCH-proquest_journals_30675392383</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsTEtNWtVIu4CJqhW7liCulPUpP0_XXwAZzO8J0FiRjnuyTfM7YisfcdpZSlGROCR6SUt3tRH6GACn0ANC846bZVTpmg8TkokLbHEXuQDo2frAvw0OM8YLAOtIFrUW_IssXBq_jXNdlWZ1leksnZ96x8aDo7O_OlhtM0E_zAeM7_uz4lRjix</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067539238</pqid></control><display><type>article</type><title>TORAX: A Fast and Differentiable Tokamak Transport Simulator in JAX</title><source>Free E- Journals</source><creator>Citrin, Jonathan ; Goodfellow, Ian ; Raju, Akhil ; Chen, Jeremy ; Degrave, Jonas ; Donner, Craig ; Felici, Federico ; Hamel, Philippe ; Huber, Andrea ; Nikulin, Dmitry ; Pfau, David ; Tracey, Brendan ; Riedmiller, Martin ; Kohli, Pushmeet</creator><creatorcontrib>Citrin, Jonathan ; Goodfellow, Ian ; Raju, Akhil ; Chen, Jeremy ; Degrave, Jonas ; Donner, Craig ; Felici, Federico ; Hamel, Philippe ; Huber, Andrea ; Nikulin, Dmitry ; Pfau, David ; Tracey, Brendan ; Riedmiller, Martin ; Kohli, Pushmeet</creatorcontrib><description>We present TORAX, a new, open-source, differentiable tokamak core transport simulator implemented in Python using the JAX framework. TORAX solves the coupled equations for ion heat transport, electron heat transport, particle transport, and current diffusion, incorporating modular physics-based and ML models. JAX's just-in-time compilation ensures fast runtimes, while its automatic differentiation capability enables gradient-based optimization workflows and simplifies the use of Jacobian-based PDE solvers. Coupling to ML-surrogates of physics models is greatly facilitated by JAX's intrinsic support for neural network development and inference. TORAX is verified against the established RAPTOR code, demonstrating agreement in simulated plasma profiles. TORAX provides a powerful and versatile tool for accelerating research in tokamak scenario modeling, pulse design, and control.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diffusion rate ; Neural networks ; Tokamak devices</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Citrin, Jonathan</creatorcontrib><creatorcontrib>Goodfellow, Ian</creatorcontrib><creatorcontrib>Raju, Akhil</creatorcontrib><creatorcontrib>Chen, Jeremy</creatorcontrib><creatorcontrib>Degrave, Jonas</creatorcontrib><creatorcontrib>Donner, Craig</creatorcontrib><creatorcontrib>Felici, Federico</creatorcontrib><creatorcontrib>Hamel, Philippe</creatorcontrib><creatorcontrib>Huber, Andrea</creatorcontrib><creatorcontrib>Nikulin, Dmitry</creatorcontrib><creatorcontrib>Pfau, David</creatorcontrib><creatorcontrib>Tracey, Brendan</creatorcontrib><creatorcontrib>Riedmiller, Martin</creatorcontrib><creatorcontrib>Kohli, Pushmeet</creatorcontrib><title>TORAX: A Fast and Differentiable Tokamak Transport Simulator in JAX</title><title>arXiv.org</title><description>We present TORAX, a new, open-source, differentiable tokamak core transport simulator implemented in Python using the JAX framework. TORAX solves the coupled equations for ion heat transport, electron heat transport, particle transport, and current diffusion, incorporating modular physics-based and ML models. JAX's just-in-time compilation ensures fast runtimes, while its automatic differentiation capability enables gradient-based optimization workflows and simplifies the use of Jacobian-based PDE solvers. Coupling to ML-surrogates of physics models is greatly facilitated by JAX's intrinsic support for neural network development and inference. TORAX is verified against the established RAPTOR code, demonstrating agreement in simulated plasma profiles. TORAX provides a powerful and versatile tool for accelerating research in tokamak scenario modeling, pulse design, and control.</description><subject>Diffusion rate</subject><subject>Neural networks</subject><subject>Tokamak devices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsTEtNWtVIu4CJqhW7liCulPUpP0_XXwAZzO8J0FiRjnuyTfM7YisfcdpZSlGROCR6SUt3tRH6GACn0ANC846bZVTpmg8TkokLbHEXuQDo2frAvw0OM8YLAOtIFrUW_IssXBq_jXNdlWZ1leksnZ96x8aDo7O_OlhtM0E_zAeM7_uz4lRjix</recordid><startdate>20241207</startdate><enddate>20241207</enddate><creator>Citrin, Jonathan</creator><creator>Goodfellow, Ian</creator><creator>Raju, Akhil</creator><creator>Chen, Jeremy</creator><creator>Degrave, Jonas</creator><creator>Donner, Craig</creator><creator>Felici, Federico</creator><creator>Hamel, Philippe</creator><creator>Huber, Andrea</creator><creator>Nikulin, Dmitry</creator><creator>Pfau, David</creator><creator>Tracey, Brendan</creator><creator>Riedmiller, Martin</creator><creator>Kohli, Pushmeet</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241207</creationdate><title>TORAX: A Fast and Differentiable Tokamak Transport Simulator in JAX</title><author>Citrin, Jonathan ; Goodfellow, Ian ; Raju, Akhil ; Chen, Jeremy ; Degrave, Jonas ; Donner, Craig ; Felici, Federico ; Hamel, Philippe ; Huber, Andrea ; Nikulin, Dmitry ; Pfau, David ; Tracey, Brendan ; Riedmiller, Martin ; Kohli, Pushmeet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30675392383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusion rate</topic><topic>Neural networks</topic><topic>Tokamak devices</topic><toplevel>online_resources</toplevel><creatorcontrib>Citrin, Jonathan</creatorcontrib><creatorcontrib>Goodfellow, Ian</creatorcontrib><creatorcontrib>Raju, Akhil</creatorcontrib><creatorcontrib>Chen, Jeremy</creatorcontrib><creatorcontrib>Degrave, Jonas</creatorcontrib><creatorcontrib>Donner, Craig</creatorcontrib><creatorcontrib>Felici, Federico</creatorcontrib><creatorcontrib>Hamel, Philippe</creatorcontrib><creatorcontrib>Huber, Andrea</creatorcontrib><creatorcontrib>Nikulin, Dmitry</creatorcontrib><creatorcontrib>Pfau, David</creatorcontrib><creatorcontrib>Tracey, Brendan</creatorcontrib><creatorcontrib>Riedmiller, Martin</creatorcontrib><creatorcontrib>Kohli, Pushmeet</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Citrin, Jonathan</au><au>Goodfellow, Ian</au><au>Raju, Akhil</au><au>Chen, Jeremy</au><au>Degrave, Jonas</au><au>Donner, Craig</au><au>Felici, Federico</au><au>Hamel, Philippe</au><au>Huber, Andrea</au><au>Nikulin, Dmitry</au><au>Pfau, David</au><au>Tracey, Brendan</au><au>Riedmiller, Martin</au><au>Kohli, Pushmeet</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TORAX: A Fast and Differentiable Tokamak Transport Simulator in JAX</atitle><jtitle>arXiv.org</jtitle><date>2024-12-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present TORAX, a new, open-source, differentiable tokamak core transport simulator implemented in Python using the JAX framework. TORAX solves the coupled equations for ion heat transport, electron heat transport, particle transport, and current diffusion, incorporating modular physics-based and ML models. JAX's just-in-time compilation ensures fast runtimes, while its automatic differentiation capability enables gradient-based optimization workflows and simplifies the use of Jacobian-based PDE solvers. Coupling to ML-surrogates of physics models is greatly facilitated by JAX's intrinsic support for neural network development and inference. TORAX is verified against the established RAPTOR code, demonstrating agreement in simulated plasma profiles. TORAX provides a powerful and versatile tool for accelerating research in tokamak scenario modeling, pulse design, and control.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3067539238
source Free E- Journals
subjects Diffusion rate
Neural networks
Tokamak devices
title TORAX: A Fast and Differentiable Tokamak Transport Simulator in JAX
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TORAX:%20A%20Fast%20and%20Differentiable%20Tokamak%20Transport%20Simulator%20in%20JAX&rft.jtitle=arXiv.org&rft.au=Citrin,%20Jonathan&rft.date=2024-12-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067539238%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067539238&rft_id=info:pmid/&rfr_iscdi=true