Unveiling the Energy Transition Process of Xinjiang: A Hybrid Approach Integrating Energy Allocation Analysis and a System Dynamics Model

The Xinjiang Uygur Autonomous Region (Xinjiang), being a rapidly developing region and a comprehensive energy base, plays an important role in China’s low-carbon energy transition. This paper attempts to develop a hybrid approach integrating energy allocation analysis, Logarithmic Mean Divisia Index...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-06, Vol.16 (11), p.4704
Hauptverfasser: Yang, Xingyuan, Yang, Honghua, Arras, Maximilian, Chong, Chin Hao, Ma, Linwei, Li, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 4704
container_title Sustainability
container_volume 16
creator Yang, Xingyuan
Yang, Honghua
Arras, Maximilian
Chong, Chin Hao
Ma, Linwei
Li, Zheng
description The Xinjiang Uygur Autonomous Region (Xinjiang), being a rapidly developing region and a comprehensive energy base, plays an important role in China’s low-carbon energy transition. This paper attempts to develop a hybrid approach integrating energy allocation analysis, Logarithmic Mean Divisia Index (LMDI) decomposition, and a system dynamics (SD) model to identify the driving factors of the energy system’s changes during 2005–2020, and to analyze future scenarios of the energy system from 2020 to 2060. The results indicate that in 2005–2020, coal and electricity consumption increased sharply, due to the expansion of the chemical and non-ferrous metal industries. Meanwhile, the natural gas flow also expanded greatly because of the construction of the Central Asia pipeline and the increase in local production. In the baseline scenario, energy-related carbon emissions (ERCE) will peak in 2046 at 628 Mt and decrease to 552 Mt in 2060. With a controlled GDP growth rate and an adjusted industrial structure, ERCE will peak in 2041 at 565 Mt and decrease to 438 Mt in 2060. With a controlled energy intensity and an adjusted energy structure, ERCE will peak in 2039 at 526 Mt and decrease to 364 Mt in 2060. If all policy measures are adopted, ERCE will peak in 2035 at 491 Mt and decrease to 298 Mt in 2060.
doi_str_mv 10.3390/su16114704
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067511582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797901452</galeid><sourcerecordid>A797901452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-4a43bbb6ac087645e973f2873766ecf324b09c98428828681d36bba6ee5716833</originalsourceid><addsrcrecordid>eNpVkcFq3DAQhk1oISHNpU8g6KmBTSXLluTcTJo0CyktTQK9mbE8drR4pY1GG-JH6FvX2w2kmTnMMHz_zw-TZR8FP5Oy4l9oK5QQhebFQXaUcy0Wgpf83X_7YXZCtOJzSSkqoY6yP_f-Cd3o_MDSA7JLj3GY2F0ETy654NnPGCwSsdCz386vHPjhnNXsemqj61i92cQA9oEtfcIhQtoZvZjU4xgs_DOpPYwTOWLgOwbsdqKEa_Z18rB2ltj30OH4IXvfw0h48jKPs_ury7uL68XNj2_Li_pmYfNSp0UBhWzbVoHlRquixErLPjdaaqXQ9jIvWl7ZyhS5MblRRnRStS0oxFILZaQ8zj7tfefkj1uk1KzCNs4BqZFc6VKI0uQzdbanBhixcb4PKYKdu8M5cvDYu_le60pXXBTlTvD5jWBmEj6nAbZEzfL211v2dM_aGIgi9s0mujXEqRG82b2yeX2l_Av6G4-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067511582</pqid></control><display><type>article</type><title>Unveiling the Energy Transition Process of Xinjiang: A Hybrid Approach Integrating Energy Allocation Analysis and a System Dynamics Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Yang, Xingyuan ; Yang, Honghua ; Arras, Maximilian ; Chong, Chin Hao ; Ma, Linwei ; Li, Zheng</creator><creatorcontrib>Yang, Xingyuan ; Yang, Honghua ; Arras, Maximilian ; Chong, Chin Hao ; Ma, Linwei ; Li, Zheng</creatorcontrib><description>The Xinjiang Uygur Autonomous Region (Xinjiang), being a rapidly developing region and a comprehensive energy base, plays an important role in China’s low-carbon energy transition. This paper attempts to develop a hybrid approach integrating energy allocation analysis, Logarithmic Mean Divisia Index (LMDI) decomposition, and a system dynamics (SD) model to identify the driving factors of the energy system’s changes during 2005–2020, and to analyze future scenarios of the energy system from 2020 to 2060. The results indicate that in 2005–2020, coal and electricity consumption increased sharply, due to the expansion of the chemical and non-ferrous metal industries. Meanwhile, the natural gas flow also expanded greatly because of the construction of the Central Asia pipeline and the increase in local production. In the baseline scenario, energy-related carbon emissions (ERCE) will peak in 2046 at 628 Mt and decrease to 552 Mt in 2060. With a controlled GDP growth rate and an adjusted industrial structure, ERCE will peak in 2041 at 565 Mt and decrease to 438 Mt in 2060. With a controlled energy intensity and an adjusted energy structure, ERCE will peak in 2039 at 526 Mt and decrease to 364 Mt in 2060. If all policy measures are adopted, ERCE will peak in 2035 at 491 Mt and decrease to 298 Mt in 2060.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16114704</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Carbon ; Climate change ; Coal ; Coal-fired power plants ; Decomposition ; Emissions ; Energy consumption ; Energy industry ; Energy transition ; Forecasts and trends ; Literature reviews ; Long term planning ; Natural gas ; Nonferrous metal industry ; Nonferrous metals ; Trends ; Uighurs</subject><ispartof>Sustainability, 2024-06, Vol.16 (11), p.4704</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-4a43bbb6ac087645e973f2873766ecf324b09c98428828681d36bba6ee5716833</cites><orcidid>0009-0009-6892-9928 ; 0000-0001-5087-7562 ; 0000-0002-9090-0488 ; 0009-0009-7832-6717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Yang, Xingyuan</creatorcontrib><creatorcontrib>Yang, Honghua</creatorcontrib><creatorcontrib>Arras, Maximilian</creatorcontrib><creatorcontrib>Chong, Chin Hao</creatorcontrib><creatorcontrib>Ma, Linwei</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><title>Unveiling the Energy Transition Process of Xinjiang: A Hybrid Approach Integrating Energy Allocation Analysis and a System Dynamics Model</title><title>Sustainability</title><description>The Xinjiang Uygur Autonomous Region (Xinjiang), being a rapidly developing region and a comprehensive energy base, plays an important role in China’s low-carbon energy transition. This paper attempts to develop a hybrid approach integrating energy allocation analysis, Logarithmic Mean Divisia Index (LMDI) decomposition, and a system dynamics (SD) model to identify the driving factors of the energy system’s changes during 2005–2020, and to analyze future scenarios of the energy system from 2020 to 2060. The results indicate that in 2005–2020, coal and electricity consumption increased sharply, due to the expansion of the chemical and non-ferrous metal industries. Meanwhile, the natural gas flow also expanded greatly because of the construction of the Central Asia pipeline and the increase in local production. In the baseline scenario, energy-related carbon emissions (ERCE) will peak in 2046 at 628 Mt and decrease to 552 Mt in 2060. With a controlled GDP growth rate and an adjusted industrial structure, ERCE will peak in 2041 at 565 Mt and decrease to 438 Mt in 2060. With a controlled energy intensity and an adjusted energy structure, ERCE will peak in 2039 at 526 Mt and decrease to 364 Mt in 2060. If all policy measures are adopted, ERCE will peak in 2035 at 491 Mt and decrease to 298 Mt in 2060.</description><subject>Alternative energy sources</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Coal</subject><subject>Coal-fired power plants</subject><subject>Decomposition</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Energy transition</subject><subject>Forecasts and trends</subject><subject>Literature reviews</subject><subject>Long term planning</subject><subject>Natural gas</subject><subject>Nonferrous metal industry</subject><subject>Nonferrous metals</subject><subject>Trends</subject><subject>Uighurs</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkcFq3DAQhk1oISHNpU8g6KmBTSXLluTcTJo0CyktTQK9mbE8drR4pY1GG-JH6FvX2w2kmTnMMHz_zw-TZR8FP5Oy4l9oK5QQhebFQXaUcy0Wgpf83X_7YXZCtOJzSSkqoY6yP_f-Cd3o_MDSA7JLj3GY2F0ETy654NnPGCwSsdCz386vHPjhnNXsemqj61i92cQA9oEtfcIhQtoZvZjU4xgs_DOpPYwTOWLgOwbsdqKEa_Z18rB2ltj30OH4IXvfw0h48jKPs_ury7uL68XNj2_Li_pmYfNSp0UBhWzbVoHlRquixErLPjdaaqXQ9jIvWl7ZyhS5MblRRnRStS0oxFILZaQ8zj7tfefkj1uk1KzCNs4BqZFc6VKI0uQzdbanBhixcb4PKYKdu8M5cvDYu_le60pXXBTlTvD5jWBmEj6nAbZEzfL211v2dM_aGIgi9s0mujXEqRG82b2yeX2l_Av6G4-I</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yang, Xingyuan</creator><creator>Yang, Honghua</creator><creator>Arras, Maximilian</creator><creator>Chong, Chin Hao</creator><creator>Ma, Linwei</creator><creator>Li, Zheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0009-0009-6892-9928</orcidid><orcidid>https://orcid.org/0000-0001-5087-7562</orcidid><orcidid>https://orcid.org/0000-0002-9090-0488</orcidid><orcidid>https://orcid.org/0009-0009-7832-6717</orcidid></search><sort><creationdate>20240601</creationdate><title>Unveiling the Energy Transition Process of Xinjiang: A Hybrid Approach Integrating Energy Allocation Analysis and a System Dynamics Model</title><author>Yang, Xingyuan ; Yang, Honghua ; Arras, Maximilian ; Chong, Chin Hao ; Ma, Linwei ; Li, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-4a43bbb6ac087645e973f2873766ecf324b09c98428828681d36bba6ee5716833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative energy sources</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Coal</topic><topic>Coal-fired power plants</topic><topic>Decomposition</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Energy transition</topic><topic>Forecasts and trends</topic><topic>Literature reviews</topic><topic>Long term planning</topic><topic>Natural gas</topic><topic>Nonferrous metal industry</topic><topic>Nonferrous metals</topic><topic>Trends</topic><topic>Uighurs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xingyuan</creatorcontrib><creatorcontrib>Yang, Honghua</creatorcontrib><creatorcontrib>Arras, Maximilian</creatorcontrib><creatorcontrib>Chong, Chin Hao</creatorcontrib><creatorcontrib>Ma, Linwei</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xingyuan</au><au>Yang, Honghua</au><au>Arras, Maximilian</au><au>Chong, Chin Hao</au><au>Ma, Linwei</au><au>Li, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the Energy Transition Process of Xinjiang: A Hybrid Approach Integrating Energy Allocation Analysis and a System Dynamics Model</atitle><jtitle>Sustainability</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>16</volume><issue>11</issue><spage>4704</spage><pages>4704-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The Xinjiang Uygur Autonomous Region (Xinjiang), being a rapidly developing region and a comprehensive energy base, plays an important role in China’s low-carbon energy transition. This paper attempts to develop a hybrid approach integrating energy allocation analysis, Logarithmic Mean Divisia Index (LMDI) decomposition, and a system dynamics (SD) model to identify the driving factors of the energy system’s changes during 2005–2020, and to analyze future scenarios of the energy system from 2020 to 2060. The results indicate that in 2005–2020, coal and electricity consumption increased sharply, due to the expansion of the chemical and non-ferrous metal industries. Meanwhile, the natural gas flow also expanded greatly because of the construction of the Central Asia pipeline and the increase in local production. In the baseline scenario, energy-related carbon emissions (ERCE) will peak in 2046 at 628 Mt and decrease to 552 Mt in 2060. With a controlled GDP growth rate and an adjusted industrial structure, ERCE will peak in 2041 at 565 Mt and decrease to 438 Mt in 2060. With a controlled energy intensity and an adjusted energy structure, ERCE will peak in 2039 at 526 Mt and decrease to 364 Mt in 2060. If all policy measures are adopted, ERCE will peak in 2035 at 491 Mt and decrease to 298 Mt in 2060.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16114704</doi><orcidid>https://orcid.org/0009-0009-6892-9928</orcidid><orcidid>https://orcid.org/0000-0001-5087-7562</orcidid><orcidid>https://orcid.org/0000-0002-9090-0488</orcidid><orcidid>https://orcid.org/0009-0009-7832-6717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-06, Vol.16 (11), p.4704
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3067511582
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Alternative energy sources
Carbon
Climate change
Coal
Coal-fired power plants
Decomposition
Emissions
Energy consumption
Energy industry
Energy transition
Forecasts and trends
Literature reviews
Long term planning
Natural gas
Nonferrous metal industry
Nonferrous metals
Trends
Uighurs
title Unveiling the Energy Transition Process of Xinjiang: A Hybrid Approach Integrating Energy Allocation Analysis and a System Dynamics Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20Energy%20Transition%20Process%20of%20Xinjiang:%20A%20Hybrid%20Approach%20Integrating%20Energy%20Allocation%20Analysis%20and%20a%20System%20Dynamics%20Model&rft.jtitle=Sustainability&rft.au=Yang,%20Xingyuan&rft.date=2024-06-01&rft.volume=16&rft.issue=11&rft.spage=4704&rft.pages=4704-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16114704&rft_dat=%3Cgale_proqu%3EA797901452%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067511582&rft_id=info:pmid/&rft_galeid=A797901452&rfr_iscdi=true