Water Flow Prediction Based on Improved Spatiotemporal Attention Mechanism of Long Short-Term Memory Network
The prediction of water plant flow should establish relationships between upstream and downstream hydrological stations, which is crucial for the early detection of flow anomalies. Long Short-Term Memory Networks (LSTMs) have been widely applied in hydrological time series forecasting. However, due...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-06, Vol.16 (11), p.1600 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!