Design of the primary mirror assembly for a space gravitational wave based on the optical path variation model

As an important component of the gravitational wave detection interferometric measurement system, the telescope’s main function is to receive and emit laser signals. Under the influence of in-orbit environmental disturbances, the telescope will experience structural deformation. This can result in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2024-06, Vol.63 (17), p.4598
Hauptverfasser: Fang, Sijun, Hai, Hongwen, Zhang, Rui, Luo, Jian, Fan, Wentong, Zhao, Kai, Li, Bohong, Song, Jie, Sun, Qicheng, Cao, Yehao, Fan, Lei, Yan, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 4598
container_title Applied optics (2004)
container_volume 63
creator Fang, Sijun
Hai, Hongwen
Zhang, Rui
Luo, Jian
Fan, Wentong
Zhao, Kai
Li, Bohong
Song, Jie
Sun, Qicheng
Cao, Yehao
Fan, Lei
Yan, Yong
description As an important component of the gravitational wave detection interferometric measurement system, the telescope’s main function is to receive and emit laser signals. Under the influence of in-orbit environmental disturbances, the telescope will experience structural deformation. This can result in changes in the propagation path of the laser within the telescope, which in turn affects the ranging accuracy. Therefore, it is necessary to suppress the optical path variation caused by the deformation of the telescope during the design phase of the telescope structure. In this paper, a calculation and analysis model of the non-geometric optical path length variation within the telescope was established using the first 36 orders of the fringe Zernike polynomials. The derivation of the geometric optical path variation within the telescope was completed, and the optical system error analysis was performed based on the internal optical path variation of the telescope as an evaluation index. The primary mirror components that meet the detection requirements were designed. The results showed that for the off-axis four-mirror optical system, under the same disturbance, the geometric optical path variation caused by the rigid displacement of the primary mirror dominates. When the environmental temperature stability is 2.8×10 −6 K⋅Hz −1/2 @0.1 Hz, the system’s optical path stability is reduced from the original 8.5pm⋅Hz −1/2 @0.1 Hz to 0.45pm⋅Hz −1/2 @0.1 Hz.
doi_str_mv 10.1364/AO.520536
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067464507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067464507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-9847eec66b7e8cde1a69e5cd9f2ff32f08ad3110b56202c5c51681c8cdab036c3</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqVw4B9Y4sQhxY_YSY5VeUqVegGJm-U469ZVEgfbLeq_J7Q97a7202hmELqnZEa5zJ_mq5lgRHB5gSaMCpFxKsUlmoxrlVFWfl-jmxi3hHCRV8UE9c8Q3brH3uK0ATwE1-lwwJ0LwQesY4Subg_Y_h84DtoAXge9d0kn53vd4l-9B1zrCA32_VHDD8mZ8TPotMF7HdwRxZ1voL1FV1a3Ee7Oc4q-Xl8-F-_ZcvX2sZgvM8NokbKqzAsAI2VdQGkaoFpWIExTWWYtZ5aUuuGUklpIRpgRRlBZUjOiuiZcGj5FDyfdIfifHcSktn4XRr9RcSKLXOaCFCP1eKJM8DEGsOqcX1Gi_utU85U61cn_AAFIaNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067464507</pqid></control><display><type>article</type><title>Design of the primary mirror assembly for a space gravitational wave based on the optical path variation model</title><source>Optica Publishing Group Journals</source><creator>Fang, Sijun ; Hai, Hongwen ; Zhang, Rui ; Luo, Jian ; Fan, Wentong ; Zhao, Kai ; Li, Bohong ; Song, Jie ; Sun, Qicheng ; Cao, Yehao ; Fan, Lei ; Yan, Yong</creator><creatorcontrib>Fang, Sijun ; Hai, Hongwen ; Zhang, Rui ; Luo, Jian ; Fan, Wentong ; Zhao, Kai ; Li, Bohong ; Song, Jie ; Sun, Qicheng ; Cao, Yehao ; Fan, Lei ; Yan, Yong</creatorcontrib><description>As an important component of the gravitational wave detection interferometric measurement system, the telescope’s main function is to receive and emit laser signals. Under the influence of in-orbit environmental disturbances, the telescope will experience structural deformation. This can result in changes in the propagation path of the laser within the telescope, which in turn affects the ranging accuracy. Therefore, it is necessary to suppress the optical path variation caused by the deformation of the telescope during the design phase of the telescope structure. In this paper, a calculation and analysis model of the non-geometric optical path length variation within the telescope was established using the first 36 orders of the fringe Zernike polynomials. The derivation of the geometric optical path variation within the telescope was completed, and the optical system error analysis was performed based on the internal optical path variation of the telescope as an evaluation index. The primary mirror components that meet the detection requirements were designed. The results showed that for the off-axis four-mirror optical system, under the same disturbance, the geometric optical path variation caused by the rigid displacement of the primary mirror dominates. When the environmental temperature stability is 2.8×10 −6 K⋅Hz −1/2 @0.1 Hz, the system’s optical path stability is reduced from the original 8.5pm⋅Hz −1/2 @0.1 Hz to 0.45pm⋅Hz −1/2 @0.1 Hz.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.520536</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Error analysis ; Gravitational waves ; Primary mirrors ; Stability ; Telescopes ; Zernike polynomials</subject><ispartof>Applied optics (2004), 2024-06, Vol.63 (17), p.4598</ispartof><rights>Copyright Optical Society of America Jun 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-9847eec66b7e8cde1a69e5cd9f2ff32f08ad3110b56202c5c51681c8cdab036c3</cites><orcidid>0009-0009-3966-2574 ; 0009-0005-1679-2764 ; 0009-0002-7605-9896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids></links><search><creatorcontrib>Fang, Sijun</creatorcontrib><creatorcontrib>Hai, Hongwen</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Fan, Wentong</creatorcontrib><creatorcontrib>Zhao, Kai</creatorcontrib><creatorcontrib>Li, Bohong</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Sun, Qicheng</creatorcontrib><creatorcontrib>Cao, Yehao</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><title>Design of the primary mirror assembly for a space gravitational wave based on the optical path variation model</title><title>Applied optics (2004)</title><description>As an important component of the gravitational wave detection interferometric measurement system, the telescope’s main function is to receive and emit laser signals. Under the influence of in-orbit environmental disturbances, the telescope will experience structural deformation. This can result in changes in the propagation path of the laser within the telescope, which in turn affects the ranging accuracy. Therefore, it is necessary to suppress the optical path variation caused by the deformation of the telescope during the design phase of the telescope structure. In this paper, a calculation and analysis model of the non-geometric optical path length variation within the telescope was established using the first 36 orders of the fringe Zernike polynomials. The derivation of the geometric optical path variation within the telescope was completed, and the optical system error analysis was performed based on the internal optical path variation of the telescope as an evaluation index. The primary mirror components that meet the detection requirements were designed. The results showed that for the off-axis four-mirror optical system, under the same disturbance, the geometric optical path variation caused by the rigid displacement of the primary mirror dominates. When the environmental temperature stability is 2.8×10 −6 K⋅Hz −1/2 @0.1 Hz, the system’s optical path stability is reduced from the original 8.5pm⋅Hz −1/2 @0.1 Hz to 0.45pm⋅Hz −1/2 @0.1 Hz.</description><subject>Error analysis</subject><subject>Gravitational waves</subject><subject>Primary mirrors</subject><subject>Stability</subject><subject>Telescopes</subject><subject>Zernike polynomials</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EEqVw4B9Y4sQhxY_YSY5VeUqVegGJm-U469ZVEgfbLeq_J7Q97a7202hmELqnZEa5zJ_mq5lgRHB5gSaMCpFxKsUlmoxrlVFWfl-jmxi3hHCRV8UE9c8Q3brH3uK0ATwE1-lwwJ0LwQesY4Subg_Y_h84DtoAXge9d0kn53vd4l-9B1zrCA32_VHDD8mZ8TPotMF7HdwRxZ1voL1FV1a3Ee7Oc4q-Xl8-F-_ZcvX2sZgvM8NokbKqzAsAI2VdQGkaoFpWIExTWWYtZ5aUuuGUklpIRpgRRlBZUjOiuiZcGj5FDyfdIfifHcSktn4XRr9RcSKLXOaCFCP1eKJM8DEGsOqcX1Gi_utU85U61cn_AAFIaNE</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Fang, Sijun</creator><creator>Hai, Hongwen</creator><creator>Zhang, Rui</creator><creator>Luo, Jian</creator><creator>Fan, Wentong</creator><creator>Zhao, Kai</creator><creator>Li, Bohong</creator><creator>Song, Jie</creator><creator>Sun, Qicheng</creator><creator>Cao, Yehao</creator><creator>Fan, Lei</creator><creator>Yan, Yong</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-3966-2574</orcidid><orcidid>https://orcid.org/0009-0005-1679-2764</orcidid><orcidid>https://orcid.org/0009-0002-7605-9896</orcidid></search><sort><creationdate>20240610</creationdate><title>Design of the primary mirror assembly for a space gravitational wave based on the optical path variation model</title><author>Fang, Sijun ; Hai, Hongwen ; Zhang, Rui ; Luo, Jian ; Fan, Wentong ; Zhao, Kai ; Li, Bohong ; Song, Jie ; Sun, Qicheng ; Cao, Yehao ; Fan, Lei ; Yan, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-9847eec66b7e8cde1a69e5cd9f2ff32f08ad3110b56202c5c51681c8cdab036c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Error analysis</topic><topic>Gravitational waves</topic><topic>Primary mirrors</topic><topic>Stability</topic><topic>Telescopes</topic><topic>Zernike polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Sijun</creatorcontrib><creatorcontrib>Hai, Hongwen</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Fan, Wentong</creatorcontrib><creatorcontrib>Zhao, Kai</creatorcontrib><creatorcontrib>Li, Bohong</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Sun, Qicheng</creatorcontrib><creatorcontrib>Cao, Yehao</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Sijun</au><au>Hai, Hongwen</au><au>Zhang, Rui</au><au>Luo, Jian</au><au>Fan, Wentong</au><au>Zhao, Kai</au><au>Li, Bohong</au><au>Song, Jie</au><au>Sun, Qicheng</au><au>Cao, Yehao</au><au>Fan, Lei</au><au>Yan, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of the primary mirror assembly for a space gravitational wave based on the optical path variation model</atitle><jtitle>Applied optics (2004)</jtitle><date>2024-06-10</date><risdate>2024</risdate><volume>63</volume><issue>17</issue><spage>4598</spage><pages>4598-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>As an important component of the gravitational wave detection interferometric measurement system, the telescope’s main function is to receive and emit laser signals. Under the influence of in-orbit environmental disturbances, the telescope will experience structural deformation. This can result in changes in the propagation path of the laser within the telescope, which in turn affects the ranging accuracy. Therefore, it is necessary to suppress the optical path variation caused by the deformation of the telescope during the design phase of the telescope structure. In this paper, a calculation and analysis model of the non-geometric optical path length variation within the telescope was established using the first 36 orders of the fringe Zernike polynomials. The derivation of the geometric optical path variation within the telescope was completed, and the optical system error analysis was performed based on the internal optical path variation of the telescope as an evaluation index. The primary mirror components that meet the detection requirements were designed. The results showed that for the off-axis four-mirror optical system, under the same disturbance, the geometric optical path variation caused by the rigid displacement of the primary mirror dominates. When the environmental temperature stability is 2.8×10 −6 K⋅Hz −1/2 @0.1 Hz, the system’s optical path stability is reduced from the original 8.5pm⋅Hz −1/2 @0.1 Hz to 0.45pm⋅Hz −1/2 @0.1 Hz.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.520536</doi><orcidid>https://orcid.org/0009-0009-3966-2574</orcidid><orcidid>https://orcid.org/0009-0005-1679-2764</orcidid><orcidid>https://orcid.org/0009-0002-7605-9896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2024-06, Vol.63 (17), p.4598
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_journals_3067464507
source Optica Publishing Group Journals
subjects Error analysis
Gravitational waves
Primary mirrors
Stability
Telescopes
Zernike polynomials
title Design of the primary mirror assembly for a space gravitational wave based on the optical path variation model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20the%20primary%20mirror%20assembly%20for%20a%20space%20gravitational%20wave%20based%20on%20the%20optical%20path%20variation%20model&rft.jtitle=Applied%20optics%20(2004)&rft.au=Fang,%20Sijun&rft.date=2024-06-10&rft.volume=63&rft.issue=17&rft.spage=4598&rft.pages=4598-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.520536&rft_dat=%3Cproquest_cross%3E3067464507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067464507&rft_id=info:pmid/&rfr_iscdi=true