Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios

With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-06, Vol.13 (11), p.2102
Hauptverfasser: Duan, Yunfeng, Bao, Haotong, Bai, Guotao, Wei, Yadong, Xue, Kaiwen, You, Zhangzheng, Zhang, Yuantian, Liu, Bin, Chen, Jiaxing, Wang, Shenhuan, Ou, Zhonghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2102
container_title Electronics (Basel)
container_volume 13
creator Duan, Yunfeng
Bao, Haotong
Bai, Guotao
Wei, Yadong
Xue, Kaiwen
You, Zhangzheng
Zhang, Yuantian
Liu, Bin
Chen, Jiaxing
Wang, Shenhuan
Ou, Zhonghong
description With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current monitoring and maintenance demands. Consequently, artificial intelligence for IT operations (AIOps), which harnesses AI and big data technologies, has emerged as a solution. AIOps plays a crucial role in enhancing service quality and customer satisfaction, boosting engineering productivity, and reducing operational costs. This article delves into the primary tasks involved in AIOps, such as anomaly detection, and log fault analysis and classification. A significant challenge identified in many AIOps tasks is the scarcity of fault sample data, indicating a natural alignment of these tasks with few-shot learning. Inspired by model-agnostic meta-learning (MAML), we propose a new anomaly detector, MAML-KAD, for application in various AIOps tasks. Observations confirm that meta-learning algorithms effectively enhance AIOps tasks, showcasing the wide-ranging application prospects of meta-learning algorithms in the field of AIOps. Moreover, we introduced an AIOps platform that embeds meta-learning within its diagnostic core and features streamlined log collection, caching, and alerting to automate the AIOps workflow.
doi_str_mv 10.3390/electronics13112102
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067424678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797898553</galeid><sourcerecordid>A797898553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-c29c07b74002de98c9bf6b3e1a13f8928b74a9e0101faf301c2e0342c6c49c013</originalsourceid><addsrcrecordid>eNptUM1KAzEQDqJgqX0CLwHPWyfJdnfjrdRWC5UequBtSdNJTWmTNUkR395IRTw4c5jh-5kZhpBrBkMhJNziHnUK3lkdmWCMM-BnpMehloXkkp__6S_JIMYd5JBMNAJ65HWBKjjrtjR5em_V1vmId_QJkyp-KeMDnRpjtUWX6HijuqSS9Y5aR2f4UazefIbnyy7SlUangvXxilwYtY84-Kl98jKbPk8ei8XyYT4ZLwqdb02F5lJDva5LAL5B2Wi5NtVaIFNMmEbyJlNKIjBgRhkBTHMEUXJd6TI7meiTm9PcLvj3I8bU7vwxuLyyFVDVJS-rusmq4Um1VXtsrTM-BaVzbvBgtXdobMbHtawb2YxGIhvEyaCDjzGgabtgDyp8tgza77e3_7xdfAEJuncr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067424678</pqid></control><display><type>article</type><title>Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Duan, Yunfeng ; Bao, Haotong ; Bai, Guotao ; Wei, Yadong ; Xue, Kaiwen ; You, Zhangzheng ; Zhang, Yuantian ; Liu, Bin ; Chen, Jiaxing ; Wang, Shenhuan ; Ou, Zhonghong</creator><creatorcontrib>Duan, Yunfeng ; Bao, Haotong ; Bai, Guotao ; Wei, Yadong ; Xue, Kaiwen ; You, Zhangzheng ; Zhang, Yuantian ; Liu, Bin ; Chen, Jiaxing ; Wang, Shenhuan ; Ou, Zhonghong</creatorcontrib><description>With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current monitoring and maintenance demands. Consequently, artificial intelligence for IT operations (AIOps), which harnesses AI and big data technologies, has emerged as a solution. AIOps plays a crucial role in enhancing service quality and customer satisfaction, boosting engineering productivity, and reducing operational costs. This article delves into the primary tasks involved in AIOps, such as anomaly detection, and log fault analysis and classification. A significant challenge identified in many AIOps tasks is the scarcity of fault sample data, indicating a natural alignment of these tasks with few-shot learning. Inspired by model-agnostic meta-learning (MAML), we propose a new anomaly detector, MAML-KAD, for application in various AIOps tasks. Observations confirm that meta-learning algorithms effectively enhance AIOps tasks, showcasing the wide-ranging application prospects of meta-learning algorithms in the field of AIOps. Moreover, we introduced an AIOps platform that embeds meta-learning within its diagnostic core and features streamlined log collection, caching, and alerting to automate the AIOps workflow.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13112102</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anomalies ; Approximation ; Artificial intelligence ; Automation ; Big Data ; Cloud computing ; Complexity ; Customer satisfaction ; Customer services ; Data mining ; Deep learning ; Detectors ; Evaluation ; Harnesses ; Human error ; Hypotheses ; Information technology ; Machine learning ; Maintenance ; Management ; Management systems ; Network management systems ; Workflow</subject><ispartof>Electronics (Basel), 2024-06, Vol.13 (11), p.2102</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-c29c07b74002de98c9bf6b3e1a13f8928b74a9e0101faf301c2e0342c6c49c013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Duan, Yunfeng</creatorcontrib><creatorcontrib>Bao, Haotong</creatorcontrib><creatorcontrib>Bai, Guotao</creatorcontrib><creatorcontrib>Wei, Yadong</creatorcontrib><creatorcontrib>Xue, Kaiwen</creatorcontrib><creatorcontrib>You, Zhangzheng</creatorcontrib><creatorcontrib>Zhang, Yuantian</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Chen, Jiaxing</creatorcontrib><creatorcontrib>Wang, Shenhuan</creatorcontrib><creatorcontrib>Ou, Zhonghong</creatorcontrib><title>Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios</title><title>Electronics (Basel)</title><description>With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current monitoring and maintenance demands. Consequently, artificial intelligence for IT operations (AIOps), which harnesses AI and big data technologies, has emerged as a solution. AIOps plays a crucial role in enhancing service quality and customer satisfaction, boosting engineering productivity, and reducing operational costs. This article delves into the primary tasks involved in AIOps, such as anomaly detection, and log fault analysis and classification. A significant challenge identified in many AIOps tasks is the scarcity of fault sample data, indicating a natural alignment of these tasks with few-shot learning. Inspired by model-agnostic meta-learning (MAML), we propose a new anomaly detector, MAML-KAD, for application in various AIOps tasks. Observations confirm that meta-learning algorithms effectively enhance AIOps tasks, showcasing the wide-ranging application prospects of meta-learning algorithms in the field of AIOps. Moreover, we introduced an AIOps platform that embeds meta-learning within its diagnostic core and features streamlined log collection, caching, and alerting to automate the AIOps workflow.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Complexity</subject><subject>Customer satisfaction</subject><subject>Customer services</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Evaluation</subject><subject>Harnesses</subject><subject>Human error</subject><subject>Hypotheses</subject><subject>Information technology</subject><subject>Machine learning</subject><subject>Maintenance</subject><subject>Management</subject><subject>Management systems</subject><subject>Network management systems</subject><subject>Workflow</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUM1KAzEQDqJgqX0CLwHPWyfJdnfjrdRWC5UequBtSdNJTWmTNUkR395IRTw4c5jh-5kZhpBrBkMhJNziHnUK3lkdmWCMM-BnpMehloXkkp__6S_JIMYd5JBMNAJ65HWBKjjrtjR5em_V1vmId_QJkyp-KeMDnRpjtUWX6HijuqSS9Y5aR2f4UazefIbnyy7SlUangvXxilwYtY84-Kl98jKbPk8ei8XyYT4ZLwqdb02F5lJDva5LAL5B2Wi5NtVaIFNMmEbyJlNKIjBgRhkBTHMEUXJd6TI7meiTm9PcLvj3I8bU7vwxuLyyFVDVJS-rusmq4Um1VXtsrTM-BaVzbvBgtXdobMbHtawb2YxGIhvEyaCDjzGgabtgDyp8tgza77e3_7xdfAEJuncr</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Duan, Yunfeng</creator><creator>Bao, Haotong</creator><creator>Bai, Guotao</creator><creator>Wei, Yadong</creator><creator>Xue, Kaiwen</creator><creator>You, Zhangzheng</creator><creator>Zhang, Yuantian</creator><creator>Liu, Bin</creator><creator>Chen, Jiaxing</creator><creator>Wang, Shenhuan</creator><creator>Ou, Zhonghong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240601</creationdate><title>Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios</title><author>Duan, Yunfeng ; Bao, Haotong ; Bai, Guotao ; Wei, Yadong ; Xue, Kaiwen ; You, Zhangzheng ; Zhang, Yuantian ; Liu, Bin ; Chen, Jiaxing ; Wang, Shenhuan ; Ou, Zhonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-c29c07b74002de98c9bf6b3e1a13f8928b74a9e0101faf301c2e0342c6c49c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Complexity</topic><topic>Customer satisfaction</topic><topic>Customer services</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Evaluation</topic><topic>Harnesses</topic><topic>Human error</topic><topic>Hypotheses</topic><topic>Information technology</topic><topic>Machine learning</topic><topic>Maintenance</topic><topic>Management</topic><topic>Management systems</topic><topic>Network management systems</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Yunfeng</creatorcontrib><creatorcontrib>Bao, Haotong</creatorcontrib><creatorcontrib>Bai, Guotao</creatorcontrib><creatorcontrib>Wei, Yadong</creatorcontrib><creatorcontrib>Xue, Kaiwen</creatorcontrib><creatorcontrib>You, Zhangzheng</creatorcontrib><creatorcontrib>Zhang, Yuantian</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Chen, Jiaxing</creatorcontrib><creatorcontrib>Wang, Shenhuan</creatorcontrib><creatorcontrib>Ou, Zhonghong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Yunfeng</au><au>Bao, Haotong</au><au>Bai, Guotao</au><au>Wei, Yadong</au><au>Xue, Kaiwen</au><au>You, Zhangzheng</au><au>Zhang, Yuantian</au><au>Liu, Bin</au><au>Chen, Jiaxing</au><au>Wang, Shenhuan</au><au>Ou, Zhonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>11</issue><spage>2102</spage><pages>2102-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current monitoring and maintenance demands. Consequently, artificial intelligence for IT operations (AIOps), which harnesses AI and big data technologies, has emerged as a solution. AIOps plays a crucial role in enhancing service quality and customer satisfaction, boosting engineering productivity, and reducing operational costs. This article delves into the primary tasks involved in AIOps, such as anomaly detection, and log fault analysis and classification. A significant challenge identified in many AIOps tasks is the scarcity of fault sample data, indicating a natural alignment of these tasks with few-shot learning. Inspired by model-agnostic meta-learning (MAML), we propose a new anomaly detector, MAML-KAD, for application in various AIOps tasks. Observations confirm that meta-learning algorithms effectively enhance AIOps tasks, showcasing the wide-ranging application prospects of meta-learning algorithms in the field of AIOps. Moreover, we introduced an AIOps platform that embeds meta-learning within its diagnostic core and features streamlined log collection, caching, and alerting to automate the AIOps workflow.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13112102</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-06, Vol.13 (11), p.2102
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3067424678
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Anomalies
Approximation
Artificial intelligence
Automation
Big Data
Cloud computing
Complexity
Customer satisfaction
Customer services
Data mining
Deep learning
Detectors
Evaluation
Harnesses
Human error
Hypotheses
Information technology
Machine learning
Maintenance
Management
Management systems
Network management systems
Workflow
title Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20Diagnose:%20Meta-Learning%20for%20Efficient%20Adaptation%20in%20Few-Shot%20AIOps%20Scenarios&rft.jtitle=Electronics%20(Basel)&rft.au=Duan,%20Yunfeng&rft.date=2024-06-01&rft.volume=13&rft.issue=11&rft.spage=2102&rft.pages=2102-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13112102&rft_dat=%3Cgale_proqu%3EA797898553%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067424678&rft_id=info:pmid/&rft_galeid=A797898553&rfr_iscdi=true