Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios
With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current mo...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-06, Vol.13 (11), p.2102 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2102 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Duan, Yunfeng Bao, Haotong Bai, Guotao Wei, Yadong Xue, Kaiwen You, Zhangzheng Zhang, Yuantian Liu, Bin Chen, Jiaxing Wang, Shenhuan Ou, Zhonghong |
description | With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current monitoring and maintenance demands. Consequently, artificial intelligence for IT operations (AIOps), which harnesses AI and big data technologies, has emerged as a solution. AIOps plays a crucial role in enhancing service quality and customer satisfaction, boosting engineering productivity, and reducing operational costs. This article delves into the primary tasks involved in AIOps, such as anomaly detection, and log fault analysis and classification. A significant challenge identified in many AIOps tasks is the scarcity of fault sample data, indicating a natural alignment of these tasks with few-shot learning. Inspired by model-agnostic meta-learning (MAML), we propose a new anomaly detector, MAML-KAD, for application in various AIOps tasks. Observations confirm that meta-learning algorithms effectively enhance AIOps tasks, showcasing the wide-ranging application prospects of meta-learning algorithms in the field of AIOps. Moreover, we introduced an AIOps platform that embeds meta-learning within its diagnostic core and features streamlined log collection, caching, and alerting to automate the AIOps workflow. |
doi_str_mv | 10.3390/electronics13112102 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067424678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797898553</galeid><sourcerecordid>A797898553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-c29c07b74002de98c9bf6b3e1a13f8928b74a9e0101faf301c2e0342c6c49c013</originalsourceid><addsrcrecordid>eNptUM1KAzEQDqJgqX0CLwHPWyfJdnfjrdRWC5UequBtSdNJTWmTNUkR395IRTw4c5jh-5kZhpBrBkMhJNziHnUK3lkdmWCMM-BnpMehloXkkp__6S_JIMYd5JBMNAJ65HWBKjjrtjR5em_V1vmId_QJkyp-KeMDnRpjtUWX6HijuqSS9Y5aR2f4UazefIbnyy7SlUangvXxilwYtY84-Kl98jKbPk8ei8XyYT4ZLwqdb02F5lJDva5LAL5B2Wi5NtVaIFNMmEbyJlNKIjBgRhkBTHMEUXJd6TI7meiTm9PcLvj3I8bU7vwxuLyyFVDVJS-rusmq4Um1VXtsrTM-BaVzbvBgtXdobMbHtawb2YxGIhvEyaCDjzGgabtgDyp8tgza77e3_7xdfAEJuncr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067424678</pqid></control><display><type>article</type><title>Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Duan, Yunfeng ; Bao, Haotong ; Bai, Guotao ; Wei, Yadong ; Xue, Kaiwen ; You, Zhangzheng ; Zhang, Yuantian ; Liu, Bin ; Chen, Jiaxing ; Wang, Shenhuan ; Ou, Zhonghong</creator><creatorcontrib>Duan, Yunfeng ; Bao, Haotong ; Bai, Guotao ; Wei, Yadong ; Xue, Kaiwen ; You, Zhangzheng ; Zhang, Yuantian ; Liu, Bin ; Chen, Jiaxing ; Wang, Shenhuan ; Ou, Zhonghong</creatorcontrib><description>With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current monitoring and maintenance demands. Consequently, artificial intelligence for IT operations (AIOps), which harnesses AI and big data technologies, has emerged as a solution. AIOps plays a crucial role in enhancing service quality and customer satisfaction, boosting engineering productivity, and reducing operational costs. This article delves into the primary tasks involved in AIOps, such as anomaly detection, and log fault analysis and classification. A significant challenge identified in many AIOps tasks is the scarcity of fault sample data, indicating a natural alignment of these tasks with few-shot learning. Inspired by model-agnostic meta-learning (MAML), we propose a new anomaly detector, MAML-KAD, for application in various AIOps tasks. Observations confirm that meta-learning algorithms effectively enhance AIOps tasks, showcasing the wide-ranging application prospects of meta-learning algorithms in the field of AIOps. Moreover, we introduced an AIOps platform that embeds meta-learning within its diagnostic core and features streamlined log collection, caching, and alerting to automate the AIOps workflow.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13112102</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anomalies ; Approximation ; Artificial intelligence ; Automation ; Big Data ; Cloud computing ; Complexity ; Customer satisfaction ; Customer services ; Data mining ; Deep learning ; Detectors ; Evaluation ; Harnesses ; Human error ; Hypotheses ; Information technology ; Machine learning ; Maintenance ; Management ; Management systems ; Network management systems ; Workflow</subject><ispartof>Electronics (Basel), 2024-06, Vol.13 (11), p.2102</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-c29c07b74002de98c9bf6b3e1a13f8928b74a9e0101faf301c2e0342c6c49c013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Duan, Yunfeng</creatorcontrib><creatorcontrib>Bao, Haotong</creatorcontrib><creatorcontrib>Bai, Guotao</creatorcontrib><creatorcontrib>Wei, Yadong</creatorcontrib><creatorcontrib>Xue, Kaiwen</creatorcontrib><creatorcontrib>You, Zhangzheng</creatorcontrib><creatorcontrib>Zhang, Yuantian</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Chen, Jiaxing</creatorcontrib><creatorcontrib>Wang, Shenhuan</creatorcontrib><creatorcontrib>Ou, Zhonghong</creatorcontrib><title>Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios</title><title>Electronics (Basel)</title><description>With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current monitoring and maintenance demands. Consequently, artificial intelligence for IT operations (AIOps), which harnesses AI and big data technologies, has emerged as a solution. AIOps plays a crucial role in enhancing service quality and customer satisfaction, boosting engineering productivity, and reducing operational costs. This article delves into the primary tasks involved in AIOps, such as anomaly detection, and log fault analysis and classification. A significant challenge identified in many AIOps tasks is the scarcity of fault sample data, indicating a natural alignment of these tasks with few-shot learning. Inspired by model-agnostic meta-learning (MAML), we propose a new anomaly detector, MAML-KAD, for application in various AIOps tasks. Observations confirm that meta-learning algorithms effectively enhance AIOps tasks, showcasing the wide-ranging application prospects of meta-learning algorithms in the field of AIOps. Moreover, we introduced an AIOps platform that embeds meta-learning within its diagnostic core and features streamlined log collection, caching, and alerting to automate the AIOps workflow.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Complexity</subject><subject>Customer satisfaction</subject><subject>Customer services</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Evaluation</subject><subject>Harnesses</subject><subject>Human error</subject><subject>Hypotheses</subject><subject>Information technology</subject><subject>Machine learning</subject><subject>Maintenance</subject><subject>Management</subject><subject>Management systems</subject><subject>Network management systems</subject><subject>Workflow</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUM1KAzEQDqJgqX0CLwHPWyfJdnfjrdRWC5UequBtSdNJTWmTNUkR395IRTw4c5jh-5kZhpBrBkMhJNziHnUK3lkdmWCMM-BnpMehloXkkp__6S_JIMYd5JBMNAJ65HWBKjjrtjR5em_V1vmId_QJkyp-KeMDnRpjtUWX6HijuqSS9Y5aR2f4UazefIbnyy7SlUangvXxilwYtY84-Kl98jKbPk8ei8XyYT4ZLwqdb02F5lJDva5LAL5B2Wi5NtVaIFNMmEbyJlNKIjBgRhkBTHMEUXJd6TI7meiTm9PcLvj3I8bU7vwxuLyyFVDVJS-rusmq4Um1VXtsrTM-BaVzbvBgtXdobMbHtawb2YxGIhvEyaCDjzGgabtgDyp8tgza77e3_7xdfAEJuncr</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Duan, Yunfeng</creator><creator>Bao, Haotong</creator><creator>Bai, Guotao</creator><creator>Wei, Yadong</creator><creator>Xue, Kaiwen</creator><creator>You, Zhangzheng</creator><creator>Zhang, Yuantian</creator><creator>Liu, Bin</creator><creator>Chen, Jiaxing</creator><creator>Wang, Shenhuan</creator><creator>Ou, Zhonghong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240601</creationdate><title>Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios</title><author>Duan, Yunfeng ; Bao, Haotong ; Bai, Guotao ; Wei, Yadong ; Xue, Kaiwen ; You, Zhangzheng ; Zhang, Yuantian ; Liu, Bin ; Chen, Jiaxing ; Wang, Shenhuan ; Ou, Zhonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-c29c07b74002de98c9bf6b3e1a13f8928b74a9e0101faf301c2e0342c6c49c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Complexity</topic><topic>Customer satisfaction</topic><topic>Customer services</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Evaluation</topic><topic>Harnesses</topic><topic>Human error</topic><topic>Hypotheses</topic><topic>Information technology</topic><topic>Machine learning</topic><topic>Maintenance</topic><topic>Management</topic><topic>Management systems</topic><topic>Network management systems</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Yunfeng</creatorcontrib><creatorcontrib>Bao, Haotong</creatorcontrib><creatorcontrib>Bai, Guotao</creatorcontrib><creatorcontrib>Wei, Yadong</creatorcontrib><creatorcontrib>Xue, Kaiwen</creatorcontrib><creatorcontrib>You, Zhangzheng</creatorcontrib><creatorcontrib>Zhang, Yuantian</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Chen, Jiaxing</creatorcontrib><creatorcontrib>Wang, Shenhuan</creatorcontrib><creatorcontrib>Ou, Zhonghong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Yunfeng</au><au>Bao, Haotong</au><au>Bai, Guotao</au><au>Wei, Yadong</au><au>Xue, Kaiwen</au><au>You, Zhangzheng</au><au>Zhang, Yuantian</au><au>Liu, Bin</au><au>Chen, Jiaxing</au><au>Wang, Shenhuan</au><au>Ou, Zhonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>11</issue><spage>2102</spage><pages>2102-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the advancement of technologies like 5G, cloud computing, and microservices, the complexity of network management systems and the variety of technical components have greatly increased. This rise in complexity has rendered traditional operations and maintenance methods inadequate for current monitoring and maintenance demands. Consequently, artificial intelligence for IT operations (AIOps), which harnesses AI and big data technologies, has emerged as a solution. AIOps plays a crucial role in enhancing service quality and customer satisfaction, boosting engineering productivity, and reducing operational costs. This article delves into the primary tasks involved in AIOps, such as anomaly detection, and log fault analysis and classification. A significant challenge identified in many AIOps tasks is the scarcity of fault sample data, indicating a natural alignment of these tasks with few-shot learning. Inspired by model-agnostic meta-learning (MAML), we propose a new anomaly detector, MAML-KAD, for application in various AIOps tasks. Observations confirm that meta-learning algorithms effectively enhance AIOps tasks, showcasing the wide-ranging application prospects of meta-learning algorithms in the field of AIOps. Moreover, we introduced an AIOps platform that embeds meta-learning within its diagnostic core and features streamlined log collection, caching, and alerting to automate the AIOps workflow.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13112102</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-06, Vol.13 (11), p.2102 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3067424678 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Anomalies Approximation Artificial intelligence Automation Big Data Cloud computing Complexity Customer satisfaction Customer services Data mining Deep learning Detectors Evaluation Harnesses Human error Hypotheses Information technology Machine learning Maintenance Management Management systems Network management systems Workflow |
title | Learning to Diagnose: Meta-Learning for Efficient Adaptation in Few-Shot AIOps Scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20Diagnose:%20Meta-Learning%20for%20Efficient%20Adaptation%20in%20Few-Shot%20AIOps%20Scenarios&rft.jtitle=Electronics%20(Basel)&rft.au=Duan,%20Yunfeng&rft.date=2024-06-01&rft.volume=13&rft.issue=11&rft.spage=2102&rft.pages=2102-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13112102&rft_dat=%3Cgale_proqu%3EA797898553%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067424678&rft_id=info:pmid/&rft_galeid=A797898553&rfr_iscdi=true |