Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection

Cyber–physical systems (CPSs) serve as the pivotal core of Internet of Things (IoT) infrastructures, such as smart grids and intelligent transportation, deploying interconnected sensing devices to monitor operating status. With increasing decentralization, the surge in sensor devices expands the pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-06, Vol.13 (11), p.2032
Hauptverfasser: Yang, Qian, Zhang, Jiaming, Zhang, Junjie, Sun, Cailing, Xie, Shanyi, Liu, Shangdong, Ji, Yimu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2032
container_title Electronics (Basel)
container_volume 13
creator Yang, Qian
Zhang, Jiaming
Zhang, Junjie
Sun, Cailing
Xie, Shanyi
Liu, Shangdong
Ji, Yimu
description Cyber–physical systems (CPSs) serve as the pivotal core of Internet of Things (IoT) infrastructures, such as smart grids and intelligent transportation, deploying interconnected sensing devices to monitor operating status. With increasing decentralization, the surge in sensor devices expands the potential vulnerability to cyber attacks. It is imperative to conduct anomaly detection research on the multivariate time series data that these sensors produce to bolster the security of distributed CPSs. However, the high dimensionality, absence of anomaly labels in real-world datasets, and intricate non-linear relationships among sensors present considerable challenges in formulating effective anomaly detection algorithms. Recent deep-learning methods have achieved progress in the field of anomaly detection. Yet, many methods either rely on statistical models that struggle to capture non-linear relationships or use conventional deep learning models like CNN and LSTM, which do not explicitly learn inter-variable correlations. In this study, we propose a novel unsupervised anomaly detection method that integrates Sparse Autoencoder with Graph Transformer network (SGTrans). SGTrans leverages Sparse Autoencoder for the dimensionality reduction and reconstruction of high-dimensional time series, thus extracting meaningful hidden representations. Then, the multivariate time series are mapped into a graph structure. We introduce a multi-head attention mechanism from Transformer into graph structure learning, constructing a Graph Transformer network forecasting module. This module performs attentive information propagation between long-distance sensor nodes and explicitly models the complex temporal dependencies among them to enhance the prediction of future behaviors. Extensive experiments and evaluations on three publicly available real-world datasets demonstrate the effectiveness of our approach.
doi_str_mv 10.3390/electronics13112032
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067424676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797900440</galeid><sourcerecordid>A797900440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-d4df39c5d61c5c7eb75f08ebb304e82cddba94d2cbbc3d427606790a04af06ce3</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgqf0FXgKeW7NJutscS_0qVAVbz0s2O1tTd5N1kir990bqwYMzhxke770ZeIRcZmwihGLX0IKJ6J01IRNZxpngJ2TAWaHGiit--mc_J6MQdiyVysRMsAFp71H3b3SD2oXGYwdInyB-eXynS2c89h51tG5L173GAPQFeoQALibUO5ok9HHfRvup0eoIdGM7oGtAC4HOne90e6A3ENOHiX5BzhrdBhj9ziF5vbvdLB7Gq-f75WK-GhsusziuZd0IZaZ1npmpKaAqpg2bQVUJJmHGTV1XWsmam6oyopa8yFleKKaZ1A3LDYghuTr69ug_9hBiufN7dOlkKRJVcpkXeWJNjqytbqG0rvERtUldQ2eNd9DYhM8LlbyZlCwJxFFg0IeA0JQ92k7jocxY-RNF-U8U4huljoIH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067424676</pqid></control><display><type>article</type><title>Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Qian ; Zhang, Jiaming ; Zhang, Junjie ; Sun, Cailing ; Xie, Shanyi ; Liu, Shangdong ; Ji, Yimu</creator><creatorcontrib>Yang, Qian ; Zhang, Jiaming ; Zhang, Junjie ; Sun, Cailing ; Xie, Shanyi ; Liu, Shangdong ; Ji, Yimu</creatorcontrib><description>Cyber–physical systems (CPSs) serve as the pivotal core of Internet of Things (IoT) infrastructures, such as smart grids and intelligent transportation, deploying interconnected sensing devices to monitor operating status. With increasing decentralization, the surge in sensor devices expands the potential vulnerability to cyber attacks. It is imperative to conduct anomaly detection research on the multivariate time series data that these sensors produce to bolster the security of distributed CPSs. However, the high dimensionality, absence of anomaly labels in real-world datasets, and intricate non-linear relationships among sensors present considerable challenges in formulating effective anomaly detection algorithms. Recent deep-learning methods have achieved progress in the field of anomaly detection. Yet, many methods either rely on statistical models that struggle to capture non-linear relationships or use conventional deep learning models like CNN and LSTM, which do not explicitly learn inter-variable correlations. In this study, we propose a novel unsupervised anomaly detection method that integrates Sparse Autoencoder with Graph Transformer network (SGTrans). SGTrans leverages Sparse Autoencoder for the dimensionality reduction and reconstruction of high-dimensional time series, thus extracting meaningful hidden representations. Then, the multivariate time series are mapped into a graph structure. We introduce a multi-head attention mechanism from Transformer into graph structure learning, constructing a Graph Transformer network forecasting module. This module performs attentive information propagation between long-distance sensor nodes and explicitly models the complex temporal dependencies among them to enhance the prediction of future behaviors. Extensive experiments and evaluations on three publicly available real-world datasets demonstrate the effectiveness of our approach.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13112032</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Anomalies ; Cyber-physical systems ; Cybersecurity ; Cyberterrorism ; Datasets ; Deep learning ; Electric transformers ; Forecasting ; Graph representations ; Internet of Things ; Learning strategies ; Machine learning ; Methods ; Modules ; Multivariate analysis ; Neural networks ; Parameter estimation ; Representations ; Sensors ; Smart grid ; Statistical models ; Time series ; Transformers</subject><ispartof>Electronics (Basel), 2024-06, Vol.13 (11), p.2032</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-d4df39c5d61c5c7eb75f08ebb304e82cddba94d2cbbc3d427606790a04af06ce3</cites><orcidid>0000-0002-8511-7544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Zhang, Jiaming</creatorcontrib><creatorcontrib>Zhang, Junjie</creatorcontrib><creatorcontrib>Sun, Cailing</creatorcontrib><creatorcontrib>Xie, Shanyi</creatorcontrib><creatorcontrib>Liu, Shangdong</creatorcontrib><creatorcontrib>Ji, Yimu</creatorcontrib><title>Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection</title><title>Electronics (Basel)</title><description>Cyber–physical systems (CPSs) serve as the pivotal core of Internet of Things (IoT) infrastructures, such as smart grids and intelligent transportation, deploying interconnected sensing devices to monitor operating status. With increasing decentralization, the surge in sensor devices expands the potential vulnerability to cyber attacks. It is imperative to conduct anomaly detection research on the multivariate time series data that these sensors produce to bolster the security of distributed CPSs. However, the high dimensionality, absence of anomaly labels in real-world datasets, and intricate non-linear relationships among sensors present considerable challenges in formulating effective anomaly detection algorithms. Recent deep-learning methods have achieved progress in the field of anomaly detection. Yet, many methods either rely on statistical models that struggle to capture non-linear relationships or use conventional deep learning models like CNN and LSTM, which do not explicitly learn inter-variable correlations. In this study, we propose a novel unsupervised anomaly detection method that integrates Sparse Autoencoder with Graph Transformer network (SGTrans). SGTrans leverages Sparse Autoencoder for the dimensionality reduction and reconstruction of high-dimensional time series, thus extracting meaningful hidden representations. Then, the multivariate time series are mapped into a graph structure. We introduce a multi-head attention mechanism from Transformer into graph structure learning, constructing a Graph Transformer network forecasting module. This module performs attentive information propagation between long-distance sensor nodes and explicitly models the complex temporal dependencies among them to enhance the prediction of future behaviors. Extensive experiments and evaluations on three publicly available real-world datasets demonstrate the effectiveness of our approach.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Anomalies</subject><subject>Cyber-physical systems</subject><subject>Cybersecurity</subject><subject>Cyberterrorism</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Electric transformers</subject><subject>Forecasting</subject><subject>Graph representations</subject><subject>Internet of Things</subject><subject>Learning strategies</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Modules</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Representations</subject><subject>Sensors</subject><subject>Smart grid</subject><subject>Statistical models</subject><subject>Time series</subject><subject>Transformers</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUU1LAzEQDaJgqf0FXgKeW7NJutscS_0qVAVbz0s2O1tTd5N1kir990bqwYMzhxke770ZeIRcZmwihGLX0IKJ6J01IRNZxpngJ2TAWaHGiit--mc_J6MQdiyVysRMsAFp71H3b3SD2oXGYwdInyB-eXynS2c89h51tG5L173GAPQFeoQALibUO5ok9HHfRvup0eoIdGM7oGtAC4HOne90e6A3ENOHiX5BzhrdBhj9ziF5vbvdLB7Gq-f75WK-GhsusziuZd0IZaZ1npmpKaAqpg2bQVUJJmHGTV1XWsmam6oyopa8yFleKKaZ1A3LDYghuTr69ug_9hBiufN7dOlkKRJVcpkXeWJNjqytbqG0rvERtUldQ2eNd9DYhM8LlbyZlCwJxFFg0IeA0JQ92k7jocxY-RNF-U8U4huljoIH</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yang, Qian</creator><creator>Zhang, Jiaming</creator><creator>Zhang, Junjie</creator><creator>Sun, Cailing</creator><creator>Xie, Shanyi</creator><creator>Liu, Shangdong</creator><creator>Ji, Yimu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8511-7544</orcidid></search><sort><creationdate>20240601</creationdate><title>Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection</title><author>Yang, Qian ; Zhang, Jiaming ; Zhang, Junjie ; Sun, Cailing ; Xie, Shanyi ; Liu, Shangdong ; Ji, Yimu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-d4df39c5d61c5c7eb75f08ebb304e82cddba94d2cbbc3d427606790a04af06ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Anomalies</topic><topic>Cyber-physical systems</topic><topic>Cybersecurity</topic><topic>Cyberterrorism</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Electric transformers</topic><topic>Forecasting</topic><topic>Graph representations</topic><topic>Internet of Things</topic><topic>Learning strategies</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Modules</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Representations</topic><topic>Sensors</topic><topic>Smart grid</topic><topic>Statistical models</topic><topic>Time series</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Zhang, Jiaming</creatorcontrib><creatorcontrib>Zhang, Junjie</creatorcontrib><creatorcontrib>Sun, Cailing</creatorcontrib><creatorcontrib>Xie, Shanyi</creatorcontrib><creatorcontrib>Liu, Shangdong</creatorcontrib><creatorcontrib>Ji, Yimu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qian</au><au>Zhang, Jiaming</au><au>Zhang, Junjie</au><au>Sun, Cailing</au><au>Xie, Shanyi</au><au>Liu, Shangdong</au><au>Ji, Yimu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>11</issue><spage>2032</spage><pages>2032-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Cyber–physical systems (CPSs) serve as the pivotal core of Internet of Things (IoT) infrastructures, such as smart grids and intelligent transportation, deploying interconnected sensing devices to monitor operating status. With increasing decentralization, the surge in sensor devices expands the potential vulnerability to cyber attacks. It is imperative to conduct anomaly detection research on the multivariate time series data that these sensors produce to bolster the security of distributed CPSs. However, the high dimensionality, absence of anomaly labels in real-world datasets, and intricate non-linear relationships among sensors present considerable challenges in formulating effective anomaly detection algorithms. Recent deep-learning methods have achieved progress in the field of anomaly detection. Yet, many methods either rely on statistical models that struggle to capture non-linear relationships or use conventional deep learning models like CNN and LSTM, which do not explicitly learn inter-variable correlations. In this study, we propose a novel unsupervised anomaly detection method that integrates Sparse Autoencoder with Graph Transformer network (SGTrans). SGTrans leverages Sparse Autoencoder for the dimensionality reduction and reconstruction of high-dimensional time series, thus extracting meaningful hidden representations. Then, the multivariate time series are mapped into a graph structure. We introduce a multi-head attention mechanism from Transformer into graph structure learning, constructing a Graph Transformer network forecasting module. This module performs attentive information propagation between long-distance sensor nodes and explicitly models the complex temporal dependencies among them to enhance the prediction of future behaviors. Extensive experiments and evaluations on three publicly available real-world datasets demonstrate the effectiveness of our approach.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13112032</doi><orcidid>https://orcid.org/0000-0002-8511-7544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-06, Vol.13 (11), p.2032
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3067424676
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Analysis
Anomalies
Cyber-physical systems
Cybersecurity
Cyberterrorism
Datasets
Deep learning
Electric transformers
Forecasting
Graph representations
Internet of Things
Learning strategies
Machine learning
Methods
Modules
Multivariate analysis
Neural networks
Parameter estimation
Representations
Sensors
Smart grid
Statistical models
Time series
Transformers
title Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Transformer%20Network%20Incorporating%20Sparse%20Representation%20for%20Multivariate%20Time%20Series%20Anomaly%20Detection&rft.jtitle=Electronics%20(Basel)&rft.au=Yang,%20Qian&rft.date=2024-06-01&rft.volume=13&rft.issue=11&rft.spage=2032&rft.pages=2032-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13112032&rft_dat=%3Cgale_proqu%3EA797900440%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067424676&rft_id=info:pmid/&rft_galeid=A797900440&rfr_iscdi=true