Enhancing Diabetic Retinopathy Detection Using Pixel Color Amplification and EfficientNetV2: A Novel Approach for Early Disease Identification

Diabetic retinopathy (DR) is a severe complication of diabetes, causing damage to retinal blood vessels due to high blood sugar levels. Early detection is crucial but often requires significant time and expertise from ophthalmologists. While artificial intelligence (AI) and image recognition hold pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-06, Vol.13 (11), p.2070
Hauptverfasser: Kao, Yi-Hsuan, Lin, Chun-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2070
container_title Electronics (Basel)
container_volume 13
creator Kao, Yi-Hsuan
Lin, Chun-Ling
description Diabetic retinopathy (DR) is a severe complication of diabetes, causing damage to retinal blood vessels due to high blood sugar levels. Early detection is crucial but often requires significant time and expertise from ophthalmologists. While artificial intelligence (AI) and image recognition hold promise for DR detection, inconsistent image quality poses a challenge. Our study presents a novel technique that integrates pixel color amplification and EfficientNetV2 to enhance fundus image attributes, aiming to address issues related to image quality and achieving superior performance in DR detection. Leveraging EfficientNetV2, an advanced convolutional neural network (CNN) architecture, we achieve 84% multiclass accuracy and 99% binary accuracy, surpassing various other CNN models, including VGG16-fc1, VGG16-fc2, NASNet, Xception, Inception ResNetV2, EfficientNet, InceptionV3, MobileNet, and ResNet50. Our research tackles the critical challenge of early detection of DR, essential for preventing vision loss. This advancement holds the potential to enhance the efficiency and accuracy of DR classification, potentially alleviating the burden on medical professionals and ultimately improving the quality of life for individuals at risk of vision loss.
doi_str_mv 10.3390/electronics13112070
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067424675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797898521</galeid><sourcerecordid>A797898521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-fdfca0bd604931ff927da9a674661294edaae88ce97b76ea46a991029479da563</originalsourceid><addsrcrecordid>eNptkcFKJDEQhhtRWFGfYC8Bz6NJp6fT8daMsyqILovutalJV5xIT9KbRNGX8JmtcWRVMIFUJfX9fxKqKH4KfiSl5sc4oMkxeGeSkEKUXPGtYpeCnuhSl9uf8h_FQUr3nIYWspF8t3iZ-yV44_wdO3WwwOwM-0OrDyPk5TM7xUzuLnh2m9bQb_eEA5uFIUTWrsbBWWfgrQ6-Z3NLW4c-X2H-W56wll2FR-LbcYwBzJJZks0hDmTsEkJCdtET_t9lv9ixMCQ8eI97xe2v-c3sfHJ5fXYxay8nhr6cJ7a3Bviir3mlpbBWl6oHDbWq6lqUusIeAJvGoFYLVSNUNWgtOFWU7mFay73icONL7_r3gCl39-Eherqyk5xsyqpW0w_qDgbsnLchRzArl0zXKq0a3UxLQdTRNxTNHlfOBI_W0fkXgdwITAwpRbTdGN0K4nMneLduafdNS-Ur9zSXyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067424675</pqid></control><display><type>article</type><title>Enhancing Diabetic Retinopathy Detection Using Pixel Color Amplification and EfficientNetV2: A Novel Approach for Early Disease Identification</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kao, Yi-Hsuan ; Lin, Chun-Ling</creator><creatorcontrib>Kao, Yi-Hsuan ; Lin, Chun-Ling</creatorcontrib><description>Diabetic retinopathy (DR) is a severe complication of diabetes, causing damage to retinal blood vessels due to high blood sugar levels. Early detection is crucial but often requires significant time and expertise from ophthalmologists. While artificial intelligence (AI) and image recognition hold promise for DR detection, inconsistent image quality poses a challenge. Our study presents a novel technique that integrates pixel color amplification and EfficientNetV2 to enhance fundus image attributes, aiming to address issues related to image quality and achieving superior performance in DR detection. Leveraging EfficientNetV2, an advanced convolutional neural network (CNN) architecture, we achieve 84% multiclass accuracy and 99% binary accuracy, surpassing various other CNN models, including VGG16-fc1, VGG16-fc2, NASNet, Xception, Inception ResNetV2, EfficientNet, InceptionV3, MobileNet, and ResNet50. Our research tackles the critical challenge of early detection of DR, essential for preventing vision loss. This advancement holds the potential to enhance the efficiency and accuracy of DR classification, potentially alleviating the burden on medical professionals and ultimately improving the quality of life for individuals at risk of vision loss.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13112070</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Amplification ; Artificial intelligence ; Artificial neural networks ; Blood vessels ; Classification ; Color ; Datasets ; Diabetes ; Diabetic retinopathy ; Hyperglycemia ; Image enhancement ; Image quality ; Innovations ; Medical imaging ; Medical imaging equipment ; Medical personnel ; Methods ; Neural networks ; Ophthalmology ; Optimization techniques ; Pixels ; Professionals ; Technological change ; Workloads</subject><ispartof>Electronics (Basel), 2024-06, Vol.13 (11), p.2070</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-fdfca0bd604931ff927da9a674661294edaae88ce97b76ea46a991029479da563</cites><orcidid>0000-0002-1947-157X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kao, Yi-Hsuan</creatorcontrib><creatorcontrib>Lin, Chun-Ling</creatorcontrib><title>Enhancing Diabetic Retinopathy Detection Using Pixel Color Amplification and EfficientNetV2: A Novel Approach for Early Disease Identification</title><title>Electronics (Basel)</title><description>Diabetic retinopathy (DR) is a severe complication of diabetes, causing damage to retinal blood vessels due to high blood sugar levels. Early detection is crucial but often requires significant time and expertise from ophthalmologists. While artificial intelligence (AI) and image recognition hold promise for DR detection, inconsistent image quality poses a challenge. Our study presents a novel technique that integrates pixel color amplification and EfficientNetV2 to enhance fundus image attributes, aiming to address issues related to image quality and achieving superior performance in DR detection. Leveraging EfficientNetV2, an advanced convolutional neural network (CNN) architecture, we achieve 84% multiclass accuracy and 99% binary accuracy, surpassing various other CNN models, including VGG16-fc1, VGG16-fc2, NASNet, Xception, Inception ResNetV2, EfficientNet, InceptionV3, MobileNet, and ResNet50. Our research tackles the critical challenge of early detection of DR, essential for preventing vision loss. This advancement holds the potential to enhance the efficiency and accuracy of DR classification, potentially alleviating the burden on medical professionals and ultimately improving the quality of life for individuals at risk of vision loss.</description><subject>Accuracy</subject><subject>Amplification</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Blood vessels</subject><subject>Classification</subject><subject>Color</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Hyperglycemia</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Innovations</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Medical personnel</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Ophthalmology</subject><subject>Optimization techniques</subject><subject>Pixels</subject><subject>Professionals</subject><subject>Technological change</subject><subject>Workloads</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkcFKJDEQhhtRWFGfYC8Bz6NJp6fT8daMsyqILovutalJV5xIT9KbRNGX8JmtcWRVMIFUJfX9fxKqKH4KfiSl5sc4oMkxeGeSkEKUXPGtYpeCnuhSl9uf8h_FQUr3nIYWspF8t3iZ-yV44_wdO3WwwOwM-0OrDyPk5TM7xUzuLnh2m9bQb_eEA5uFIUTWrsbBWWfgrQ6-Z3NLW4c-X2H-W56wll2FR-LbcYwBzJJZks0hDmTsEkJCdtET_t9lv9ixMCQ8eI97xe2v-c3sfHJ5fXYxay8nhr6cJ7a3Bviir3mlpbBWl6oHDbWq6lqUusIeAJvGoFYLVSNUNWgtOFWU7mFay73icONL7_r3gCl39-Eherqyk5xsyqpW0w_qDgbsnLchRzArl0zXKq0a3UxLQdTRNxTNHlfOBI_W0fkXgdwITAwpRbTdGN0K4nMneLduafdNS-Ur9zSXyQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kao, Yi-Hsuan</creator><creator>Lin, Chun-Ling</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1947-157X</orcidid></search><sort><creationdate>20240601</creationdate><title>Enhancing Diabetic Retinopathy Detection Using Pixel Color Amplification and EfficientNetV2: A Novel Approach for Early Disease Identification</title><author>Kao, Yi-Hsuan ; Lin, Chun-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-fdfca0bd604931ff927da9a674661294edaae88ce97b76ea46a991029479da563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Amplification</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Blood vessels</topic><topic>Classification</topic><topic>Color</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Hyperglycemia</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Innovations</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Medical personnel</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Ophthalmology</topic><topic>Optimization techniques</topic><topic>Pixels</topic><topic>Professionals</topic><topic>Technological change</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, Yi-Hsuan</creatorcontrib><creatorcontrib>Lin, Chun-Ling</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kao, Yi-Hsuan</au><au>Lin, Chun-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Diabetic Retinopathy Detection Using Pixel Color Amplification and EfficientNetV2: A Novel Approach for Early Disease Identification</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>11</issue><spage>2070</spage><pages>2070-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Diabetic retinopathy (DR) is a severe complication of diabetes, causing damage to retinal blood vessels due to high blood sugar levels. Early detection is crucial but often requires significant time and expertise from ophthalmologists. While artificial intelligence (AI) and image recognition hold promise for DR detection, inconsistent image quality poses a challenge. Our study presents a novel technique that integrates pixel color amplification and EfficientNetV2 to enhance fundus image attributes, aiming to address issues related to image quality and achieving superior performance in DR detection. Leveraging EfficientNetV2, an advanced convolutional neural network (CNN) architecture, we achieve 84% multiclass accuracy and 99% binary accuracy, surpassing various other CNN models, including VGG16-fc1, VGG16-fc2, NASNet, Xception, Inception ResNetV2, EfficientNet, InceptionV3, MobileNet, and ResNet50. Our research tackles the critical challenge of early detection of DR, essential for preventing vision loss. This advancement holds the potential to enhance the efficiency and accuracy of DR classification, potentially alleviating the burden on medical professionals and ultimately improving the quality of life for individuals at risk of vision loss.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13112070</doi><orcidid>https://orcid.org/0000-0002-1947-157X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-06, Vol.13 (11), p.2070
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3067424675
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Amplification
Artificial intelligence
Artificial neural networks
Blood vessels
Classification
Color
Datasets
Diabetes
Diabetic retinopathy
Hyperglycemia
Image enhancement
Image quality
Innovations
Medical imaging
Medical imaging equipment
Medical personnel
Methods
Neural networks
Ophthalmology
Optimization techniques
Pixels
Professionals
Technological change
Workloads
title Enhancing Diabetic Retinopathy Detection Using Pixel Color Amplification and EfficientNetV2: A Novel Approach for Early Disease Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Diabetic%20Retinopathy%20Detection%20Using%20Pixel%20Color%20Amplification%20and%20EfficientNetV2:%20A%20Novel%20Approach%20for%20Early%20Disease%20Identification&rft.jtitle=Electronics%20(Basel)&rft.au=Kao,%20Yi-Hsuan&rft.date=2024-06-01&rft.volume=13&rft.issue=11&rft.spage=2070&rft.pages=2070-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13112070&rft_dat=%3Cgale_proqu%3EA797898521%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067424675&rft_id=info:pmid/&rft_galeid=A797898521&rfr_iscdi=true