A Feature-Reduction Scheme Based on a Two-Sample t-Test to Eliminate Useless Spectrogram Frequency Bands in Acoustic Event Detection Systems
Acoustic event detection (AED) systems, combined with video surveillance systems, can enhance urban security and safety by automatically detecting incidents, supporting the smart city concept. AED systems mostly use mel spectrograms as a well-known effective acoustic feature. The spectrogram is a co...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-06, Vol.13 (11), p.2064 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2064 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Hajihashemi, Vahid Gharahbagh, Abdorreza Alavi Hajaboutalebi, Narges Zahraei, Mohsen Machado, José J. M. Tavares, João Manuel R. S. |
description | Acoustic event detection (AED) systems, combined with video surveillance systems, can enhance urban security and safety by automatically detecting incidents, supporting the smart city concept. AED systems mostly use mel spectrograms as a well-known effective acoustic feature. The spectrogram is a combination of frequency bands. A big challenge is that some of the spectrogram bands may be similar in different events and be useless in AED. Removing useless bands reduces the input feature dimension and is highly desirable. This article proposes a mathematical feature analysis method to identify and eliminate ineffective spectrogram bands and improve AED systems’ efficiency. The proposed approach uses a Student’s t-test to compare frequency bands of the spectrogram from different acoustic events. The similarity between each frequency band among events is calculated using a two-sample t-test, allowing the identification of distinct and similar frequency bands. Removing these bands accelerates the training speed of the used classifier by reducing the number of features, and also enhances the system’s accuracy and efficiency. Based on the obtained results, the proposed method reduces the spectrogram bands by 26.3%. The results showed an average difference of 7.77% in the Jaccard, 4.07% in the Dice, and 5.7% in the Hamming distance between selected bands using train and test datasets. These small values underscore the validity of the obtained results for the test dataset. |
doi_str_mv | 10.3390/electronics13112064 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067424660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797898515</galeid><sourcerecordid>A797898515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-921709b067db29d69677fe2dd7572bbeb28c04afad4c570d92c7704e945917953</originalsourceid><addsrcrecordid>eNptUctOwzAQjBBIIOgXcLHEOeBHEsfHAC0gVUKi5Rw59gaMErvYDqj_wEdjaA8c2D3sQ7szs9osOyf4kjGBr2AAFb2zRgXCCKG4Kg6yE4q5yAUV9PBPfpzNQnjDyQRhNcMn2VeDFiDj5CF_Aj2paJxFK_UKI6BrGUCjVEu0_nT5So6bAVDM1xAiig7NBzMaKyOg55BEhIBWm18pL16OaOHhfQKrtgnH6oCMRY1yU4hGofkH2IhuIcKecBsijOEsO-rlEGC2j6fZ82K-vrnPl493DzfNMleM1TFdQjgWHa647qjQlag474FqzUtOuw46WitcyF7qQpUca0EV57gAUZSCcFGy0-xih7vxLmkMsX1zk7eJsmUJtaBFVeE0dbmbepEDtMb2LnqpkmsYjXIWepP6DRe8FnVJfmDZbkF5F4KHvt14M0q_bQluf17V_vMq9g0EgYp1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067424660</pqid></control><display><type>article</type><title>A Feature-Reduction Scheme Based on a Two-Sample t-Test to Eliminate Useless Spectrogram Frequency Bands in Acoustic Event Detection Systems</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hajihashemi, Vahid ; Gharahbagh, Abdorreza Alavi ; Hajaboutalebi, Narges ; Zahraei, Mohsen ; Machado, José J. M. ; Tavares, João Manuel R. S.</creator><creatorcontrib>Hajihashemi, Vahid ; Gharahbagh, Abdorreza Alavi ; Hajaboutalebi, Narges ; Zahraei, Mohsen ; Machado, José J. M. ; Tavares, João Manuel R. S.</creatorcontrib><description>Acoustic event detection (AED) systems, combined with video surveillance systems, can enhance urban security and safety by automatically detecting incidents, supporting the smart city concept. AED systems mostly use mel spectrograms as a well-known effective acoustic feature. The spectrogram is a combination of frequency bands. A big challenge is that some of the spectrogram bands may be similar in different events and be useless in AED. Removing useless bands reduces the input feature dimension and is highly desirable. This article proposes a mathematical feature analysis method to identify and eliminate ineffective spectrogram bands and improve AED systems’ efficiency. The proposed approach uses a Student’s t-test to compare frequency bands of the spectrogram from different acoustic events. The similarity between each frequency band among events is calculated using a two-sample t-test, allowing the identification of distinct and similar frequency bands. Removing these bands accelerates the training speed of the used classifier by reducing the number of features, and also enhances the system’s accuracy and efficiency. Based on the obtained results, the proposed method reduces the spectrogram bands by 26.3%. The results showed an average difference of 7.77% in the Jaccard, 4.07% in the Dice, and 5.7% in the Hamming distance between selected bands using train and test datasets. These small values underscore the validity of the obtained results for the test dataset.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13112064</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acoustic properties ; Acoustics ; Algorithms ; Band spectra ; Birds ; Classification ; Convulsions & seizures ; Datasets ; Detectors ; Earthquakes ; Fourier transforms ; Frequencies ; Gravitational waves ; Identification methods ; Machine learning ; Methods ; Neural networks ; Smart cities ; Sound ; Spectrograms ; Surveillance systems ; System effectiveness ; Urban areas ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2024-06, Vol.13 (11), p.2064</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-921709b067db29d69677fe2dd7572bbeb28c04afad4c570d92c7704e945917953</cites><orcidid>0000-0003-0863-1977 ; 0000-0003-2059-3993 ; 0000-0002-0842-8250 ; 0000-0001-7603-6526 ; 0000-0002-1094-0114 ; 0000-0002-0680-7169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hajihashemi, Vahid</creatorcontrib><creatorcontrib>Gharahbagh, Abdorreza Alavi</creatorcontrib><creatorcontrib>Hajaboutalebi, Narges</creatorcontrib><creatorcontrib>Zahraei, Mohsen</creatorcontrib><creatorcontrib>Machado, José J. M.</creatorcontrib><creatorcontrib>Tavares, João Manuel R. S.</creatorcontrib><title>A Feature-Reduction Scheme Based on a Two-Sample t-Test to Eliminate Useless Spectrogram Frequency Bands in Acoustic Event Detection Systems</title><title>Electronics (Basel)</title><description>Acoustic event detection (AED) systems, combined with video surveillance systems, can enhance urban security and safety by automatically detecting incidents, supporting the smart city concept. AED systems mostly use mel spectrograms as a well-known effective acoustic feature. The spectrogram is a combination of frequency bands. A big challenge is that some of the spectrogram bands may be similar in different events and be useless in AED. Removing useless bands reduces the input feature dimension and is highly desirable. This article proposes a mathematical feature analysis method to identify and eliminate ineffective spectrogram bands and improve AED systems’ efficiency. The proposed approach uses a Student’s t-test to compare frequency bands of the spectrogram from different acoustic events. The similarity between each frequency band among events is calculated using a two-sample t-test, allowing the identification of distinct and similar frequency bands. Removing these bands accelerates the training speed of the used classifier by reducing the number of features, and also enhances the system’s accuracy and efficiency. Based on the obtained results, the proposed method reduces the spectrogram bands by 26.3%. The results showed an average difference of 7.77% in the Jaccard, 4.07% in the Dice, and 5.7% in the Hamming distance between selected bands using train and test datasets. These small values underscore the validity of the obtained results for the test dataset.</description><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Band spectra</subject><subject>Birds</subject><subject>Classification</subject><subject>Convulsions & seizures</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Earthquakes</subject><subject>Fourier transforms</subject><subject>Frequencies</subject><subject>Gravitational waves</subject><subject>Identification methods</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Smart cities</subject><subject>Sound</subject><subject>Spectrograms</subject><subject>Surveillance systems</subject><subject>System effectiveness</subject><subject>Urban areas</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUctOwzAQjBBIIOgXcLHEOeBHEsfHAC0gVUKi5Rw59gaMErvYDqj_wEdjaA8c2D3sQ7szs9osOyf4kjGBr2AAFb2zRgXCCKG4Kg6yE4q5yAUV9PBPfpzNQnjDyQRhNcMn2VeDFiDj5CF_Aj2paJxFK_UKI6BrGUCjVEu0_nT5So6bAVDM1xAiig7NBzMaKyOg55BEhIBWm18pL16OaOHhfQKrtgnH6oCMRY1yU4hGofkH2IhuIcKecBsijOEsO-rlEGC2j6fZ82K-vrnPl493DzfNMleM1TFdQjgWHa647qjQlag474FqzUtOuw46WitcyF7qQpUca0EV57gAUZSCcFGy0-xih7vxLmkMsX1zk7eJsmUJtaBFVeE0dbmbepEDtMb2LnqpkmsYjXIWepP6DRe8FnVJfmDZbkF5F4KHvt14M0q_bQluf17V_vMq9g0EgYp1</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Hajihashemi, Vahid</creator><creator>Gharahbagh, Abdorreza Alavi</creator><creator>Hajaboutalebi, Narges</creator><creator>Zahraei, Mohsen</creator><creator>Machado, José J. M.</creator><creator>Tavares, João Manuel R. S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0863-1977</orcidid><orcidid>https://orcid.org/0000-0003-2059-3993</orcidid><orcidid>https://orcid.org/0000-0002-0842-8250</orcidid><orcidid>https://orcid.org/0000-0001-7603-6526</orcidid><orcidid>https://orcid.org/0000-0002-1094-0114</orcidid><orcidid>https://orcid.org/0000-0002-0680-7169</orcidid></search><sort><creationdate>20240601</creationdate><title>A Feature-Reduction Scheme Based on a Two-Sample t-Test to Eliminate Useless Spectrogram Frequency Bands in Acoustic Event Detection Systems</title><author>Hajihashemi, Vahid ; Gharahbagh, Abdorreza Alavi ; Hajaboutalebi, Narges ; Zahraei, Mohsen ; Machado, José J. M. ; Tavares, João Manuel R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-921709b067db29d69677fe2dd7572bbeb28c04afad4c570d92c7704e945917953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Band spectra</topic><topic>Birds</topic><topic>Classification</topic><topic>Convulsions & seizures</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Earthquakes</topic><topic>Fourier transforms</topic><topic>Frequencies</topic><topic>Gravitational waves</topic><topic>Identification methods</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Smart cities</topic><topic>Sound</topic><topic>Spectrograms</topic><topic>Surveillance systems</topic><topic>System effectiveness</topic><topic>Urban areas</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajihashemi, Vahid</creatorcontrib><creatorcontrib>Gharahbagh, Abdorreza Alavi</creatorcontrib><creatorcontrib>Hajaboutalebi, Narges</creatorcontrib><creatorcontrib>Zahraei, Mohsen</creatorcontrib><creatorcontrib>Machado, José J. M.</creatorcontrib><creatorcontrib>Tavares, João Manuel R. S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajihashemi, Vahid</au><au>Gharahbagh, Abdorreza Alavi</au><au>Hajaboutalebi, Narges</au><au>Zahraei, Mohsen</au><au>Machado, José J. M.</au><au>Tavares, João Manuel R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Feature-Reduction Scheme Based on a Two-Sample t-Test to Eliminate Useless Spectrogram Frequency Bands in Acoustic Event Detection Systems</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>11</issue><spage>2064</spage><pages>2064-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Acoustic event detection (AED) systems, combined with video surveillance systems, can enhance urban security and safety by automatically detecting incidents, supporting the smart city concept. AED systems mostly use mel spectrograms as a well-known effective acoustic feature. The spectrogram is a combination of frequency bands. A big challenge is that some of the spectrogram bands may be similar in different events and be useless in AED. Removing useless bands reduces the input feature dimension and is highly desirable. This article proposes a mathematical feature analysis method to identify and eliminate ineffective spectrogram bands and improve AED systems’ efficiency. The proposed approach uses a Student’s t-test to compare frequency bands of the spectrogram from different acoustic events. The similarity between each frequency band among events is calculated using a two-sample t-test, allowing the identification of distinct and similar frequency bands. Removing these bands accelerates the training speed of the used classifier by reducing the number of features, and also enhances the system’s accuracy and efficiency. Based on the obtained results, the proposed method reduces the spectrogram bands by 26.3%. The results showed an average difference of 7.77% in the Jaccard, 4.07% in the Dice, and 5.7% in the Hamming distance between selected bands using train and test datasets. These small values underscore the validity of the obtained results for the test dataset.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13112064</doi><orcidid>https://orcid.org/0000-0003-0863-1977</orcidid><orcidid>https://orcid.org/0000-0003-2059-3993</orcidid><orcidid>https://orcid.org/0000-0002-0842-8250</orcidid><orcidid>https://orcid.org/0000-0001-7603-6526</orcidid><orcidid>https://orcid.org/0000-0002-1094-0114</orcidid><orcidid>https://orcid.org/0000-0002-0680-7169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-06, Vol.13 (11), p.2064 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3067424660 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acoustic properties Acoustics Algorithms Band spectra Birds Classification Convulsions & seizures Datasets Detectors Earthquakes Fourier transforms Frequencies Gravitational waves Identification methods Machine learning Methods Neural networks Smart cities Sound Spectrograms Surveillance systems System effectiveness Urban areas Wavelet transforms |
title | A Feature-Reduction Scheme Based on a Two-Sample t-Test to Eliminate Useless Spectrogram Frequency Bands in Acoustic Event Detection Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Feature-Reduction%20Scheme%20Based%20on%20a%20Two-Sample%20t-Test%20to%20Eliminate%20Useless%20Spectrogram%20Frequency%20Bands%20in%20Acoustic%20Event%20Detection%20Systems&rft.jtitle=Electronics%20(Basel)&rft.au=Hajihashemi,%20Vahid&rft.date=2024-06-01&rft.volume=13&rft.issue=11&rft.spage=2064&rft.pages=2064-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13112064&rft_dat=%3Cgale_proqu%3EA797898515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067424660&rft_id=info:pmid/&rft_galeid=A797898515&rfr_iscdi=true |