Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows
Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by redu...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-06, Vol.13 (11), p.2112 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2112 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Matuzevičius, Dalius Urbanavičius, Vytautas Miniotas, Darius Mikučionis, Šarūnas Laptik, Raimond Ušinskas, Andrius |
description | Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling. |
doi_str_mv | 10.3390/electronics13112112 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067424208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797898563</galeid><sourcerecordid>A797898563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-32d8b6ae0d0e6a932ef097faff11e0779709ed5db74eb392c7e55df29cc0efcb3</originalsourceid><addsrcrecordid>eNptUN1LwzAQD6LgmPsLfCn43JmPdmke55w6HGyC4mNJ08vMbJuZpEr_eyPzwQfvDu44fh_wQ-iS4CljAl9DAyo42xnlCSOExjlBI4q5SAUV9PTPfY4m3u9xLEFYwfAIbR5hSLfWdCG9Ba-cOQTr0hvpoU5WrdxB8tTLxoQhWX7KppfB2C4xXbJ9s8HunGxbCG5IXq1714398hfoTMvGw-R3j9HL3fJ58ZCuN_erxXydKpqRkDJaF9VMAq4xzKRgFDQWXEutCQHMueBYQJ3XFc-gYoIqDnleayqUwqBVxcbo6qh7cPajBx_Kve1dFy1Lhmc8oxnFRURNj6idbKA0nbbBSRW7htYo24E28T-PdoUo8hmLBHYkKGe9d6DLgzOtdENJcPmTdvlP2uwbyjF22g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067424208</pqid></control><display><type>article</type><title>Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Matuzevičius, Dalius ; Urbanavičius, Vytautas ; Miniotas, Darius ; Mikučionis, Šarūnas ; Laptik, Raimond ; Ušinskas, Andrius</creator><creatorcontrib>Matuzevičius, Dalius ; Urbanavičius, Vytautas ; Miniotas, Darius ; Mikučionis, Šarūnas ; Laptik, Raimond ; Ušinskas, Andrius</creatorcontrib><description>Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13112112</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Automation ; Cultural heritage ; Datasets ; Geospatial data ; Image quality ; Image reconstruction ; Localization ; Methods ; Photogrammetry ; Quality assessment ; Redundancy ; Reproducibility ; Smartphones ; Spatial data ; Three dimensional models ; Workflow</subject><ispartof>Electronics (Basel), 2024-06, Vol.13 (11), p.2112</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-32d8b6ae0d0e6a932ef097faff11e0779709ed5db74eb392c7e55df29cc0efcb3</cites><orcidid>0000-0003-2403-8006 ; 0000-0002-5137-4585 ; 0000-0002-0869-8832 ; 0000-0001-9134-149X ; 0000-0002-9627-6436 ; 0000-0003-0623-9808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Matuzevičius, Dalius</creatorcontrib><creatorcontrib>Urbanavičius, Vytautas</creatorcontrib><creatorcontrib>Miniotas, Darius</creatorcontrib><creatorcontrib>Mikučionis, Šarūnas</creatorcontrib><creatorcontrib>Laptik, Raimond</creatorcontrib><creatorcontrib>Ušinskas, Andrius</creatorcontrib><title>Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows</title><title>Electronics (Basel)</title><description>Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Cultural heritage</subject><subject>Datasets</subject><subject>Geospatial data</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Localization</subject><subject>Methods</subject><subject>Photogrammetry</subject><subject>Quality assessment</subject><subject>Redundancy</subject><subject>Reproducibility</subject><subject>Smartphones</subject><subject>Spatial data</subject><subject>Three dimensional models</subject><subject>Workflow</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUN1LwzAQD6LgmPsLfCn43JmPdmke55w6HGyC4mNJ08vMbJuZpEr_eyPzwQfvDu44fh_wQ-iS4CljAl9DAyo42xnlCSOExjlBI4q5SAUV9PTPfY4m3u9xLEFYwfAIbR5hSLfWdCG9Ba-cOQTr0hvpoU5WrdxB8tTLxoQhWX7KppfB2C4xXbJ9s8HunGxbCG5IXq1714398hfoTMvGw-R3j9HL3fJ58ZCuN_erxXydKpqRkDJaF9VMAq4xzKRgFDQWXEutCQHMueBYQJ3XFc-gYoIqDnleayqUwqBVxcbo6qh7cPajBx_Kve1dFy1Lhmc8oxnFRURNj6idbKA0nbbBSRW7htYo24E28T-PdoUo8hmLBHYkKGe9d6DLgzOtdENJcPmTdvlP2uwbyjF22g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Matuzevičius, Dalius</creator><creator>Urbanavičius, Vytautas</creator><creator>Miniotas, Darius</creator><creator>Mikučionis, Šarūnas</creator><creator>Laptik, Raimond</creator><creator>Ušinskas, Andrius</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2403-8006</orcidid><orcidid>https://orcid.org/0000-0002-5137-4585</orcidid><orcidid>https://orcid.org/0000-0002-0869-8832</orcidid><orcidid>https://orcid.org/0000-0001-9134-149X</orcidid><orcidid>https://orcid.org/0000-0002-9627-6436</orcidid><orcidid>https://orcid.org/0000-0003-0623-9808</orcidid></search><sort><creationdate>20240601</creationdate><title>Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows</title><author>Matuzevičius, Dalius ; Urbanavičius, Vytautas ; Miniotas, Darius ; Mikučionis, Šarūnas ; Laptik, Raimond ; Ušinskas, Andrius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-32d8b6ae0d0e6a932ef097faff11e0779709ed5db74eb392c7e55df29cc0efcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Cultural heritage</topic><topic>Datasets</topic><topic>Geospatial data</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Localization</topic><topic>Methods</topic><topic>Photogrammetry</topic><topic>Quality assessment</topic><topic>Redundancy</topic><topic>Reproducibility</topic><topic>Smartphones</topic><topic>Spatial data</topic><topic>Three dimensional models</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matuzevičius, Dalius</creatorcontrib><creatorcontrib>Urbanavičius, Vytautas</creatorcontrib><creatorcontrib>Miniotas, Darius</creatorcontrib><creatorcontrib>Mikučionis, Šarūnas</creatorcontrib><creatorcontrib>Laptik, Raimond</creatorcontrib><creatorcontrib>Ušinskas, Andrius</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matuzevičius, Dalius</au><au>Urbanavičius, Vytautas</au><au>Miniotas, Darius</au><au>Mikučionis, Šarūnas</au><au>Laptik, Raimond</au><au>Ušinskas, Andrius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>11</issue><spage>2112</spage><pages>2112-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13112112</doi><orcidid>https://orcid.org/0000-0003-2403-8006</orcidid><orcidid>https://orcid.org/0000-0002-5137-4585</orcidid><orcidid>https://orcid.org/0000-0002-0869-8832</orcidid><orcidid>https://orcid.org/0000-0001-9134-149X</orcidid><orcidid>https://orcid.org/0000-0002-9627-6436</orcidid><orcidid>https://orcid.org/0000-0003-0623-9808</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-06, Vol.13 (11), p.2112 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3067424208 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Automation Cultural heritage Datasets Geospatial data Image quality Image reconstruction Localization Methods Photogrammetry Quality assessment Redundancy Reproducibility Smartphones Spatial data Three dimensional models Workflow |
title | Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Key-Point-Descriptor-Based%20Image%20Quality%20Evaluation%20in%20Photogrammetry%20Workflows&rft.jtitle=Electronics%20(Basel)&rft.au=Matuzevi%C4%8Dius,%20Dalius&rft.date=2024-06-01&rft.volume=13&rft.issue=11&rft.spage=2112&rft.pages=2112-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13112112&rft_dat=%3Cgale_proqu%3EA797898563%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067424208&rft_id=info:pmid/&rft_galeid=A797898563&rfr_iscdi=true |