Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows

Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-06, Vol.13 (11), p.2112
Hauptverfasser: Matuzevičius, Dalius, Urbanavičius, Vytautas, Miniotas, Darius, Mikučionis, Šarūnas, Laptik, Raimond, Ušinskas, Andrius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2112
container_title Electronics (Basel)
container_volume 13
creator Matuzevičius, Dalius
Urbanavičius, Vytautas
Miniotas, Darius
Mikučionis, Šarūnas
Laptik, Raimond
Ušinskas, Andrius
description Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.
doi_str_mv 10.3390/electronics13112112
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3067424208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797898563</galeid><sourcerecordid>A797898563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-32d8b6ae0d0e6a932ef097faff11e0779709ed5db74eb392c7e55df29cc0efcb3</originalsourceid><addsrcrecordid>eNptUN1LwzAQD6LgmPsLfCn43JmPdmke55w6HGyC4mNJ08vMbJuZpEr_eyPzwQfvDu44fh_wQ-iS4CljAl9DAyo42xnlCSOExjlBI4q5SAUV9PTPfY4m3u9xLEFYwfAIbR5hSLfWdCG9Ba-cOQTr0hvpoU5WrdxB8tTLxoQhWX7KppfB2C4xXbJ9s8HunGxbCG5IXq1714398hfoTMvGw-R3j9HL3fJ58ZCuN_erxXydKpqRkDJaF9VMAq4xzKRgFDQWXEutCQHMueBYQJ3XFc-gYoIqDnleayqUwqBVxcbo6qh7cPajBx_Kve1dFy1Lhmc8oxnFRURNj6idbKA0nbbBSRW7htYo24E28T-PdoUo8hmLBHYkKGe9d6DLgzOtdENJcPmTdvlP2uwbyjF22g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067424208</pqid></control><display><type>article</type><title>Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Matuzevičius, Dalius ; Urbanavičius, Vytautas ; Miniotas, Darius ; Mikučionis, Šarūnas ; Laptik, Raimond ; Ušinskas, Andrius</creator><creatorcontrib>Matuzevičius, Dalius ; Urbanavičius, Vytautas ; Miniotas, Darius ; Mikučionis, Šarūnas ; Laptik, Raimond ; Ušinskas, Andrius</creatorcontrib><description>Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13112112</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Automation ; Cultural heritage ; Datasets ; Geospatial data ; Image quality ; Image reconstruction ; Localization ; Methods ; Photogrammetry ; Quality assessment ; Redundancy ; Reproducibility ; Smartphones ; Spatial data ; Three dimensional models ; Workflow</subject><ispartof>Electronics (Basel), 2024-06, Vol.13 (11), p.2112</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-32d8b6ae0d0e6a932ef097faff11e0779709ed5db74eb392c7e55df29cc0efcb3</cites><orcidid>0000-0003-2403-8006 ; 0000-0002-5137-4585 ; 0000-0002-0869-8832 ; 0000-0001-9134-149X ; 0000-0002-9627-6436 ; 0000-0003-0623-9808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Matuzevičius, Dalius</creatorcontrib><creatorcontrib>Urbanavičius, Vytautas</creatorcontrib><creatorcontrib>Miniotas, Darius</creatorcontrib><creatorcontrib>Mikučionis, Šarūnas</creatorcontrib><creatorcontrib>Laptik, Raimond</creatorcontrib><creatorcontrib>Ušinskas, Andrius</creatorcontrib><title>Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows</title><title>Electronics (Basel)</title><description>Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Cultural heritage</subject><subject>Datasets</subject><subject>Geospatial data</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Localization</subject><subject>Methods</subject><subject>Photogrammetry</subject><subject>Quality assessment</subject><subject>Redundancy</subject><subject>Reproducibility</subject><subject>Smartphones</subject><subject>Spatial data</subject><subject>Three dimensional models</subject><subject>Workflow</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUN1LwzAQD6LgmPsLfCn43JmPdmke55w6HGyC4mNJ08vMbJuZpEr_eyPzwQfvDu44fh_wQ-iS4CljAl9DAyo42xnlCSOExjlBI4q5SAUV9PTPfY4m3u9xLEFYwfAIbR5hSLfWdCG9Ba-cOQTr0hvpoU5WrdxB8tTLxoQhWX7KppfB2C4xXbJ9s8HunGxbCG5IXq1714398hfoTMvGw-R3j9HL3fJ58ZCuN_erxXydKpqRkDJaF9VMAq4xzKRgFDQWXEutCQHMueBYQJ3XFc-gYoIqDnleayqUwqBVxcbo6qh7cPajBx_Kve1dFy1Lhmc8oxnFRURNj6idbKA0nbbBSRW7htYo24E28T-PdoUo8hmLBHYkKGe9d6DLgzOtdENJcPmTdvlP2uwbyjF22g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Matuzevičius, Dalius</creator><creator>Urbanavičius, Vytautas</creator><creator>Miniotas, Darius</creator><creator>Mikučionis, Šarūnas</creator><creator>Laptik, Raimond</creator><creator>Ušinskas, Andrius</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2403-8006</orcidid><orcidid>https://orcid.org/0000-0002-5137-4585</orcidid><orcidid>https://orcid.org/0000-0002-0869-8832</orcidid><orcidid>https://orcid.org/0000-0001-9134-149X</orcidid><orcidid>https://orcid.org/0000-0002-9627-6436</orcidid><orcidid>https://orcid.org/0000-0003-0623-9808</orcidid></search><sort><creationdate>20240601</creationdate><title>Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows</title><author>Matuzevičius, Dalius ; Urbanavičius, Vytautas ; Miniotas, Darius ; Mikučionis, Šarūnas ; Laptik, Raimond ; Ušinskas, Andrius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-32d8b6ae0d0e6a932ef097faff11e0779709ed5db74eb392c7e55df29cc0efcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Cultural heritage</topic><topic>Datasets</topic><topic>Geospatial data</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Localization</topic><topic>Methods</topic><topic>Photogrammetry</topic><topic>Quality assessment</topic><topic>Redundancy</topic><topic>Reproducibility</topic><topic>Smartphones</topic><topic>Spatial data</topic><topic>Three dimensional models</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matuzevičius, Dalius</creatorcontrib><creatorcontrib>Urbanavičius, Vytautas</creatorcontrib><creatorcontrib>Miniotas, Darius</creatorcontrib><creatorcontrib>Mikučionis, Šarūnas</creatorcontrib><creatorcontrib>Laptik, Raimond</creatorcontrib><creatorcontrib>Ušinskas, Andrius</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matuzevičius, Dalius</au><au>Urbanavičius, Vytautas</au><au>Miniotas, Darius</au><au>Mikučionis, Šarūnas</au><au>Laptik, Raimond</au><au>Ušinskas, Andrius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>11</issue><spage>2112</spage><pages>2112-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13112112</doi><orcidid>https://orcid.org/0000-0003-2403-8006</orcidid><orcidid>https://orcid.org/0000-0002-5137-4585</orcidid><orcidid>https://orcid.org/0000-0002-0869-8832</orcidid><orcidid>https://orcid.org/0000-0001-9134-149X</orcidid><orcidid>https://orcid.org/0000-0002-9627-6436</orcidid><orcidid>https://orcid.org/0000-0003-0623-9808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-06, Vol.13 (11), p.2112
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3067424208
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Automation
Cultural heritage
Datasets
Geospatial data
Image quality
Image reconstruction
Localization
Methods
Photogrammetry
Quality assessment
Redundancy
Reproducibility
Smartphones
Spatial data
Three dimensional models
Workflow
title Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Key-Point-Descriptor-Based%20Image%20Quality%20Evaluation%20in%20Photogrammetry%20Workflows&rft.jtitle=Electronics%20(Basel)&rft.au=Matuzevi%C4%8Dius,%20Dalius&rft.date=2024-06-01&rft.volume=13&rft.issue=11&rft.spage=2112&rft.pages=2112-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13112112&rft_dat=%3Cgale_proqu%3EA797898563%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067424208&rft_id=info:pmid/&rft_galeid=A797898563&rfr_iscdi=true