Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam
The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During...
Gespeichert in:
Veröffentlicht in: | Polymer bulletin (Berlin, Germany) Germany), 2024-07, Vol.81 (10), p.9253-9263 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9263 |
---|---|
container_issue | 10 |
container_start_page | 9253 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 81 |
creator | Sargsyan, S. H. Sargsyan, A. S. Khizantsyan, K. M. Sargsyan, T. S. Aghajanyan, I. G. Margaryan, K. S. |
description | The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During the electrolysis of aqueous and water–ethanol solutions of VT with VC at various ratios in the presence of AgNO
3
, metal nanocomposites and coatings are formed on purely iron and steel electrodes. The structure and composition of the synthesized metal nanocomposites were confirmed by various physicochemical methods, such as electron and IR spectroscopic, X-ray phase and thermogravimetric, elemental analyses, as well as by transmission electron microscopy. In the electronic spectra of nanocomposites, absorption bands appear with a maximum at 405–421 nm, which is typical for systems with zero-valent silver. The IR spectra show that the matrix structure hardly changes during the formation of nanocomposites and coatings. At high current densities (
j
≥ 10 mA/sm
2
), nanocomposite films are formed on the electrode surface. The silver content in nanocomposites is 0–9%, which leads to an increase in the viscosity of nanocomposite solutions compared to solutions of the initial copolymers. Increasing the silver content above 8% will lead first to a partial and then to a complete loss of solubility. According to the data of transmission electron macroscopy, the synthesized polymer nanocomposites consist of isolated silver nanoparticles, predominantly spherical in shape, uniformly distributed in the bulk of the polymer matrix. The size dispersion of nanoparticles depends on the silver content in the nanoparticles. The thermal decomposition of metal nanocomposites occurs in stages. |
doi_str_mv | 10.1007/s00289-024-05147-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067418548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067418548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-68cd1f3868ddc5db5747c08bfa075e9a759de4f8fe6ba4eb9415fde05c6dc1f93</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKsv4CrgttGTmdxmKaVeoOhG1yGTi50yndRkWqhP7-gI7nR1OJzv_w98CF1SuKYA8iYDFKoiUDACnDJJ5BGaUFYKUjBWHaMJUAkEVFmdorOc1zDsQtAJWi9ab_sU7cpvGmtanA9dv_K5yTgGnJt27xPuTBdt3GxjbnqfcW2ydzh2mJJ90x1aQmfFjJE-NeYjth6bzuGnn5M12xRbY3uzOUcnwbTZX_zMKXq9W7zMH8jy-f5xfrsktqhUT4SyjoZSCeWc5a7mkkkLqg4GJPeVkbxyngUVvKgN83XFKA_OA7fCWRqqcoquxt7h8_vO516v4y51w0tdgpCMKs7UfxTQkjM6UMVI2RRzTj7obWo2Jh00Bf1lXo_m9WBef5vXcgiVYygPcPfm02_1H6lPQBGHIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067013541</pqid></control><display><type>article</type><title>Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam</title><source>Springer Nature - Complete Springer Journals</source><creator>Sargsyan, S. H. ; Sargsyan, A. S. ; Khizantsyan, K. M. ; Sargsyan, T. S. ; Aghajanyan, I. G. ; Margaryan, K. S.</creator><creatorcontrib>Sargsyan, S. H. ; Sargsyan, A. S. ; Khizantsyan, K. M. ; Sargsyan, T. S. ; Aghajanyan, I. G. ; Margaryan, K. S.</creatorcontrib><description>The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During the electrolysis of aqueous and water–ethanol solutions of VT with VC at various ratios in the presence of AgNO
3
, metal nanocomposites and coatings are formed on purely iron and steel electrodes. The structure and composition of the synthesized metal nanocomposites were confirmed by various physicochemical methods, such as electron and IR spectroscopic, X-ray phase and thermogravimetric, elemental analyses, as well as by transmission electron microscopy. In the electronic spectra of nanocomposites, absorption bands appear with a maximum at 405–421 nm, which is typical for systems with zero-valent silver. The IR spectra show that the matrix structure hardly changes during the formation of nanocomposites and coatings. At high current densities (
j
≥ 10 mA/sm
2
), nanocomposite films are formed on the electrode surface. The silver content in nanocomposites is 0–9%, which leads to an increase in the viscosity of nanocomposite solutions compared to solutions of the initial copolymers. Increasing the silver content above 8% will lead first to a partial and then to a complete loss of solubility. According to the data of transmission electron macroscopy, the synthesized polymer nanocomposites consist of isolated silver nanoparticles, predominantly spherical in shape, uniformly distributed in the bulk of the polymer matrix. The size dispersion of nanoparticles depends on the silver content in the nanoparticles. The thermal decomposition of metal nanocomposites occurs in stages.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-024-05147-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption spectra ; Caprolactam ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Coatings ; Complex Fluids and Microfluidics ; Copolymers ; Electrodes ; Electrolysis ; Electronic spectra ; Ethanol ; Infrared spectroscopy ; Macroscopy ; Nanocomposites ; Nanoparticles ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Polymerization ; Polymers ; Silver ; Silver nitrate ; Soft and Granular Matter ; Spectrum analysis ; Thermal decomposition ; Triazoles</subject><ispartof>Polymer bulletin (Berlin, Germany), 2024-07, Vol.81 (10), p.9253-9263</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-68cd1f3868ddc5db5747c08bfa075e9a759de4f8fe6ba4eb9415fde05c6dc1f93</cites><orcidid>0000-0002-5102-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-024-05147-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00289-024-05147-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Sargsyan, S. H.</creatorcontrib><creatorcontrib>Sargsyan, A. S.</creatorcontrib><creatorcontrib>Khizantsyan, K. M.</creatorcontrib><creatorcontrib>Sargsyan, T. S.</creatorcontrib><creatorcontrib>Aghajanyan, I. G.</creatorcontrib><creatorcontrib>Margaryan, K. S.</creatorcontrib><title>Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During the electrolysis of aqueous and water–ethanol solutions of VT with VC at various ratios in the presence of AgNO
3
, metal nanocomposites and coatings are formed on purely iron and steel electrodes. The structure and composition of the synthesized metal nanocomposites were confirmed by various physicochemical methods, such as electron and IR spectroscopic, X-ray phase and thermogravimetric, elemental analyses, as well as by transmission electron microscopy. In the electronic spectra of nanocomposites, absorption bands appear with a maximum at 405–421 nm, which is typical for systems with zero-valent silver. The IR spectra show that the matrix structure hardly changes during the formation of nanocomposites and coatings. At high current densities (
j
≥ 10 mA/sm
2
), nanocomposite films are formed on the electrode surface. The silver content in nanocomposites is 0–9%, which leads to an increase in the viscosity of nanocomposite solutions compared to solutions of the initial copolymers. Increasing the silver content above 8% will lead first to a partial and then to a complete loss of solubility. According to the data of transmission electron macroscopy, the synthesized polymer nanocomposites consist of isolated silver nanoparticles, predominantly spherical in shape, uniformly distributed in the bulk of the polymer matrix. The size dispersion of nanoparticles depends on the silver content in the nanoparticles. The thermal decomposition of metal nanocomposites occurs in stages.</description><subject>Absorption spectra</subject><subject>Caprolactam</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coatings</subject><subject>Complex Fluids and Microfluidics</subject><subject>Copolymers</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electronic spectra</subject><subject>Ethanol</subject><subject>Infrared spectroscopy</subject><subject>Macroscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Silver</subject><subject>Silver nitrate</subject><subject>Soft and Granular Matter</subject><subject>Spectrum analysis</subject><subject>Thermal decomposition</subject><subject>Triazoles</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKsv4CrgttGTmdxmKaVeoOhG1yGTi50yndRkWqhP7-gI7nR1OJzv_w98CF1SuKYA8iYDFKoiUDACnDJJ5BGaUFYKUjBWHaMJUAkEVFmdorOc1zDsQtAJWi9ab_sU7cpvGmtanA9dv_K5yTgGnJt27xPuTBdt3GxjbnqfcW2ydzh2mJJ90x1aQmfFjJE-NeYjth6bzuGnn5M12xRbY3uzOUcnwbTZX_zMKXq9W7zMH8jy-f5xfrsktqhUT4SyjoZSCeWc5a7mkkkLqg4GJPeVkbxyngUVvKgN83XFKA_OA7fCWRqqcoquxt7h8_vO516v4y51w0tdgpCMKs7UfxTQkjM6UMVI2RRzTj7obWo2Jh00Bf1lXo_m9WBef5vXcgiVYygPcPfm02_1H6lPQBGHIw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Sargsyan, S. H.</creator><creator>Sargsyan, A. S.</creator><creator>Khizantsyan, K. M.</creator><creator>Sargsyan, T. S.</creator><creator>Aghajanyan, I. G.</creator><creator>Margaryan, K. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5102-3873</orcidid></search><sort><creationdate>20240701</creationdate><title>Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam</title><author>Sargsyan, S. H. ; Sargsyan, A. S. ; Khizantsyan, K. M. ; Sargsyan, T. S. ; Aghajanyan, I. G. ; Margaryan, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-68cd1f3868ddc5db5747c08bfa075e9a759de4f8fe6ba4eb9415fde05c6dc1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Caprolactam</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coatings</topic><topic>Complex Fluids and Microfluidics</topic><topic>Copolymers</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electronic spectra</topic><topic>Ethanol</topic><topic>Infrared spectroscopy</topic><topic>Macroscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Silver</topic><topic>Silver nitrate</topic><topic>Soft and Granular Matter</topic><topic>Spectrum analysis</topic><topic>Thermal decomposition</topic><topic>Triazoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sargsyan, S. H.</creatorcontrib><creatorcontrib>Sargsyan, A. S.</creatorcontrib><creatorcontrib>Khizantsyan, K. M.</creatorcontrib><creatorcontrib>Sargsyan, T. S.</creatorcontrib><creatorcontrib>Aghajanyan, I. G.</creatorcontrib><creatorcontrib>Margaryan, K. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sargsyan, S. H.</au><au>Sargsyan, A. S.</au><au>Khizantsyan, K. M.</au><au>Sargsyan, T. S.</au><au>Aghajanyan, I. G.</au><au>Margaryan, K. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>81</volume><issue>10</issue><spage>9253</spage><epage>9263</epage><pages>9253-9263</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During the electrolysis of aqueous and water–ethanol solutions of VT with VC at various ratios in the presence of AgNO
3
, metal nanocomposites and coatings are formed on purely iron and steel electrodes. The structure and composition of the synthesized metal nanocomposites were confirmed by various physicochemical methods, such as electron and IR spectroscopic, X-ray phase and thermogravimetric, elemental analyses, as well as by transmission electron microscopy. In the electronic spectra of nanocomposites, absorption bands appear with a maximum at 405–421 nm, which is typical for systems with zero-valent silver. The IR spectra show that the matrix structure hardly changes during the formation of nanocomposites and coatings. At high current densities (
j
≥ 10 mA/sm
2
), nanocomposite films are formed on the electrode surface. The silver content in nanocomposites is 0–9%, which leads to an increase in the viscosity of nanocomposite solutions compared to solutions of the initial copolymers. Increasing the silver content above 8% will lead first to a partial and then to a complete loss of solubility. According to the data of transmission electron macroscopy, the synthesized polymer nanocomposites consist of isolated silver nanoparticles, predominantly spherical in shape, uniformly distributed in the bulk of the polymer matrix. The size dispersion of nanoparticles depends on the silver content in the nanoparticles. The thermal decomposition of metal nanocomposites occurs in stages.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-024-05147-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5102-3873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2024-07, Vol.81 (10), p.9253-9263 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_3067418548 |
source | Springer Nature - Complete Springer Journals |
subjects | Absorption spectra Caprolactam Characterization and Evaluation of Materials Chemical synthesis Chemistry Chemistry and Materials Science Coatings Complex Fluids and Microfluidics Copolymers Electrodes Electrolysis Electronic spectra Ethanol Infrared spectroscopy Macroscopy Nanocomposites Nanoparticles Organic Chemistry Original Paper Physical Chemistry Polymer Sciences Polymerization Polymers Silver Silver nitrate Soft and Granular Matter Spectrum analysis Thermal decomposition Triazoles |
title | Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20synthesis%20of%20silver%20nanocomposites%20based%20on%201-vinyl-1,2,4-triazole%20and%20N-vinyl-caprolactam&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Sargsyan,%20S.%20H.&rft.date=2024-07-01&rft.volume=81&rft.issue=10&rft.spage=9253&rft.epage=9263&rft.pages=9253-9263&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-024-05147-7&rft_dat=%3Cproquest_cross%3E3067418548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067013541&rft_id=info:pmid/&rfr_iscdi=true |