Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam

The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2024-07, Vol.81 (10), p.9253-9263
Hauptverfasser: Sargsyan, S. H., Sargsyan, A. S., Khizantsyan, K. M., Sargsyan, T. S., Aghajanyan, I. G., Margaryan, K. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9263
container_issue 10
container_start_page 9253
container_title Polymer bulletin (Berlin, Germany)
container_volume 81
creator Sargsyan, S. H.
Sargsyan, A. S.
Khizantsyan, K. M.
Sargsyan, T. S.
Aghajanyan, I. G.
Margaryan, K. S.
description The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During the electrolysis of aqueous and water–ethanol solutions of VT with VC at various ratios in the presence of AgNO 3 , metal nanocomposites and coatings are formed on purely iron and steel electrodes. The structure and composition of the synthesized metal nanocomposites were confirmed by various physicochemical methods, such as electron and IR spectroscopic, X-ray phase and thermogravimetric, elemental analyses, as well as by transmission electron microscopy. In the electronic spectra of nanocomposites, absorption bands appear with a maximum at 405–421 nm, which is typical for systems with zero-valent silver. The IR spectra show that the matrix structure hardly changes during the formation of nanocomposites and coatings. At high current densities ( j  ≥ 10 mA/sm 2 ), nanocomposite films are formed on the electrode surface. The silver content in nanocomposites is 0–9%, which leads to an increase in the viscosity of nanocomposite solutions compared to solutions of the initial copolymers. Increasing the silver content above 8% will lead first to a partial and then to a complete loss of solubility. According to the data of transmission electron macroscopy, the synthesized polymer nanocomposites consist of isolated silver nanoparticles, predominantly spherical in shape, uniformly distributed in the bulk of the polymer matrix. The size dispersion of nanoparticles depends on the silver content in the nanoparticles. The thermal decomposition of metal nanocomposites occurs in stages.
doi_str_mv 10.1007/s00289-024-05147-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067418548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067418548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-68cd1f3868ddc5db5747c08bfa075e9a759de4f8fe6ba4eb9415fde05c6dc1f93</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKsv4CrgttGTmdxmKaVeoOhG1yGTi50yndRkWqhP7-gI7nR1OJzv_w98CF1SuKYA8iYDFKoiUDACnDJJ5BGaUFYKUjBWHaMJUAkEVFmdorOc1zDsQtAJWi9ab_sU7cpvGmtanA9dv_K5yTgGnJt27xPuTBdt3GxjbnqfcW2ydzh2mJJ90x1aQmfFjJE-NeYjth6bzuGnn5M12xRbY3uzOUcnwbTZX_zMKXq9W7zMH8jy-f5xfrsktqhUT4SyjoZSCeWc5a7mkkkLqg4GJPeVkbxyngUVvKgN83XFKA_OA7fCWRqqcoquxt7h8_vO516v4y51w0tdgpCMKs7UfxTQkjM6UMVI2RRzTj7obWo2Jh00Bf1lXo_m9WBef5vXcgiVYygPcPfm02_1H6lPQBGHIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067013541</pqid></control><display><type>article</type><title>Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam</title><source>Springer Nature - Complete Springer Journals</source><creator>Sargsyan, S. H. ; Sargsyan, A. S. ; Khizantsyan, K. M. ; Sargsyan, T. S. ; Aghajanyan, I. G. ; Margaryan, K. S.</creator><creatorcontrib>Sargsyan, S. H. ; Sargsyan, A. S. ; Khizantsyan, K. M. ; Sargsyan, T. S. ; Aghajanyan, I. G. ; Margaryan, K. S.</creatorcontrib><description>The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During the electrolysis of aqueous and water–ethanol solutions of VT with VC at various ratios in the presence of AgNO 3 , metal nanocomposites and coatings are formed on purely iron and steel electrodes. The structure and composition of the synthesized metal nanocomposites were confirmed by various physicochemical methods, such as electron and IR spectroscopic, X-ray phase and thermogravimetric, elemental analyses, as well as by transmission electron microscopy. In the electronic spectra of nanocomposites, absorption bands appear with a maximum at 405–421 nm, which is typical for systems with zero-valent silver. The IR spectra show that the matrix structure hardly changes during the formation of nanocomposites and coatings. At high current densities ( j  ≥ 10 mA/sm 2 ), nanocomposite films are formed on the electrode surface. The silver content in nanocomposites is 0–9%, which leads to an increase in the viscosity of nanocomposite solutions compared to solutions of the initial copolymers. Increasing the silver content above 8% will lead first to a partial and then to a complete loss of solubility. According to the data of transmission electron macroscopy, the synthesized polymer nanocomposites consist of isolated silver nanoparticles, predominantly spherical in shape, uniformly distributed in the bulk of the polymer matrix. The size dispersion of nanoparticles depends on the silver content in the nanoparticles. The thermal decomposition of metal nanocomposites occurs in stages.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-024-05147-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption spectra ; Caprolactam ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Coatings ; Complex Fluids and Microfluidics ; Copolymers ; Electrodes ; Electrolysis ; Electronic spectra ; Ethanol ; Infrared spectroscopy ; Macroscopy ; Nanocomposites ; Nanoparticles ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Polymerization ; Polymers ; Silver ; Silver nitrate ; Soft and Granular Matter ; Spectrum analysis ; Thermal decomposition ; Triazoles</subject><ispartof>Polymer bulletin (Berlin, Germany), 2024-07, Vol.81 (10), p.9253-9263</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-68cd1f3868ddc5db5747c08bfa075e9a759de4f8fe6ba4eb9415fde05c6dc1f93</cites><orcidid>0000-0002-5102-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-024-05147-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00289-024-05147-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Sargsyan, S. H.</creatorcontrib><creatorcontrib>Sargsyan, A. S.</creatorcontrib><creatorcontrib>Khizantsyan, K. M.</creatorcontrib><creatorcontrib>Sargsyan, T. S.</creatorcontrib><creatorcontrib>Aghajanyan, I. G.</creatorcontrib><creatorcontrib>Margaryan, K. S.</creatorcontrib><title>Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During the electrolysis of aqueous and water–ethanol solutions of VT with VC at various ratios in the presence of AgNO 3 , metal nanocomposites and coatings are formed on purely iron and steel electrodes. The structure and composition of the synthesized metal nanocomposites were confirmed by various physicochemical methods, such as electron and IR spectroscopic, X-ray phase and thermogravimetric, elemental analyses, as well as by transmission electron microscopy. In the electronic spectra of nanocomposites, absorption bands appear with a maximum at 405–421 nm, which is typical for systems with zero-valent silver. The IR spectra show that the matrix structure hardly changes during the formation of nanocomposites and coatings. At high current densities ( j  ≥ 10 mA/sm 2 ), nanocomposite films are formed on the electrode surface. The silver content in nanocomposites is 0–9%, which leads to an increase in the viscosity of nanocomposite solutions compared to solutions of the initial copolymers. Increasing the silver content above 8% will lead first to a partial and then to a complete loss of solubility. According to the data of transmission electron macroscopy, the synthesized polymer nanocomposites consist of isolated silver nanoparticles, predominantly spherical in shape, uniformly distributed in the bulk of the polymer matrix. The size dispersion of nanoparticles depends on the silver content in the nanoparticles. The thermal decomposition of metal nanocomposites occurs in stages.</description><subject>Absorption spectra</subject><subject>Caprolactam</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coatings</subject><subject>Complex Fluids and Microfluidics</subject><subject>Copolymers</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electronic spectra</subject><subject>Ethanol</subject><subject>Infrared spectroscopy</subject><subject>Macroscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Silver</subject><subject>Silver nitrate</subject><subject>Soft and Granular Matter</subject><subject>Spectrum analysis</subject><subject>Thermal decomposition</subject><subject>Triazoles</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKsv4CrgttGTmdxmKaVeoOhG1yGTi50yndRkWqhP7-gI7nR1OJzv_w98CF1SuKYA8iYDFKoiUDACnDJJ5BGaUFYKUjBWHaMJUAkEVFmdorOc1zDsQtAJWi9ab_sU7cpvGmtanA9dv_K5yTgGnJt27xPuTBdt3GxjbnqfcW2ydzh2mJJ90x1aQmfFjJE-NeYjth6bzuGnn5M12xRbY3uzOUcnwbTZX_zMKXq9W7zMH8jy-f5xfrsktqhUT4SyjoZSCeWc5a7mkkkLqg4GJPeVkbxyngUVvKgN83XFKA_OA7fCWRqqcoquxt7h8_vO516v4y51w0tdgpCMKs7UfxTQkjM6UMVI2RRzTj7obWo2Jh00Bf1lXo_m9WBef5vXcgiVYygPcPfm02_1H6lPQBGHIw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Sargsyan, S. H.</creator><creator>Sargsyan, A. S.</creator><creator>Khizantsyan, K. M.</creator><creator>Sargsyan, T. S.</creator><creator>Aghajanyan, I. G.</creator><creator>Margaryan, K. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5102-3873</orcidid></search><sort><creationdate>20240701</creationdate><title>Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam</title><author>Sargsyan, S. H. ; Sargsyan, A. S. ; Khizantsyan, K. M. ; Sargsyan, T. S. ; Aghajanyan, I. G. ; Margaryan, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-68cd1f3868ddc5db5747c08bfa075e9a759de4f8fe6ba4eb9415fde05c6dc1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Caprolactam</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coatings</topic><topic>Complex Fluids and Microfluidics</topic><topic>Copolymers</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electronic spectra</topic><topic>Ethanol</topic><topic>Infrared spectroscopy</topic><topic>Macroscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Silver</topic><topic>Silver nitrate</topic><topic>Soft and Granular Matter</topic><topic>Spectrum analysis</topic><topic>Thermal decomposition</topic><topic>Triazoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sargsyan, S. H.</creatorcontrib><creatorcontrib>Sargsyan, A. S.</creatorcontrib><creatorcontrib>Khizantsyan, K. M.</creatorcontrib><creatorcontrib>Sargsyan, T. S.</creatorcontrib><creatorcontrib>Aghajanyan, I. G.</creatorcontrib><creatorcontrib>Margaryan, K. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sargsyan, S. H.</au><au>Sargsyan, A. S.</au><au>Khizantsyan, K. M.</au><au>Sargsyan, T. S.</au><au>Aghajanyan, I. G.</au><au>Margaryan, K. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>81</volume><issue>10</issue><spage>9253</spage><epage>9263</epage><pages>9253-9263</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>The paper discusses the results of the electrosynthesis of metal–polymer nanocomposites of silver and coatings on pure iron and steel electrodes by combining the process of electropolymerization of 1-vinyl-1,2,4-triazole (VT) with N-vinyl-caprolactam (VC) and cathodic precipitation of metals. During the electrolysis of aqueous and water–ethanol solutions of VT with VC at various ratios in the presence of AgNO 3 , metal nanocomposites and coatings are formed on purely iron and steel electrodes. The structure and composition of the synthesized metal nanocomposites were confirmed by various physicochemical methods, such as electron and IR spectroscopic, X-ray phase and thermogravimetric, elemental analyses, as well as by transmission electron microscopy. In the electronic spectra of nanocomposites, absorption bands appear with a maximum at 405–421 nm, which is typical for systems with zero-valent silver. The IR spectra show that the matrix structure hardly changes during the formation of nanocomposites and coatings. At high current densities ( j  ≥ 10 mA/sm 2 ), nanocomposite films are formed on the electrode surface. The silver content in nanocomposites is 0–9%, which leads to an increase in the viscosity of nanocomposite solutions compared to solutions of the initial copolymers. Increasing the silver content above 8% will lead first to a partial and then to a complete loss of solubility. According to the data of transmission electron macroscopy, the synthesized polymer nanocomposites consist of isolated silver nanoparticles, predominantly spherical in shape, uniformly distributed in the bulk of the polymer matrix. The size dispersion of nanoparticles depends on the silver content in the nanoparticles. The thermal decomposition of metal nanocomposites occurs in stages.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-024-05147-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5102-3873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2024-07, Vol.81 (10), p.9253-9263
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_3067418548
source Springer Nature - Complete Springer Journals
subjects Absorption spectra
Caprolactam
Characterization and Evaluation of Materials
Chemical synthesis
Chemistry
Chemistry and Materials Science
Coatings
Complex Fluids and Microfluidics
Copolymers
Electrodes
Electrolysis
Electronic spectra
Ethanol
Infrared spectroscopy
Macroscopy
Nanocomposites
Nanoparticles
Organic Chemistry
Original Paper
Physical Chemistry
Polymer Sciences
Polymerization
Polymers
Silver
Silver nitrate
Soft and Granular Matter
Spectrum analysis
Thermal decomposition
Triazoles
title Electrochemical synthesis of silver nanocomposites based on 1-vinyl-1,2,4-triazole and N-vinyl-caprolactam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20synthesis%20of%20silver%20nanocomposites%20based%20on%201-vinyl-1,2,4-triazole%20and%20N-vinyl-caprolactam&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Sargsyan,%20S.%20H.&rft.date=2024-07-01&rft.volume=81&rft.issue=10&rft.spage=9253&rft.epage=9263&rft.pages=9253-9263&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-024-05147-7&rft_dat=%3Cproquest_cross%3E3067418548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067013541&rft_id=info:pmid/&rfr_iscdi=true