Effect of Temperature on the Conduction Mechanism and Dielectric Properties of the Ceramic Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3

The ceramic compound Ba 0.97 Bi 0.02 Ti 0.9 Zr 0.05 Nb 0.04 O 3 has been fabricated via a molten-salt method to investigate the effect of temperature on the dielectric properties and conduction mechanism. The XRD results suggest that the investigated compound's main phase crystallizes in a pseu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inorganic and organometallic polymers and materials 2024, Vol.34 (5), p.1920-1930
Hauptverfasser: Raddaoui, Zeineb, Albedah, Mohammed A., Brahem, Rahma Ayed, Jbeli, Anouar, Elkossi, Safwen, Jemai, Dhahri, Belmabrouk, Hafedh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1930
container_issue 5
container_start_page 1920
container_title Journal of inorganic and organometallic polymers and materials
container_volume 34
creator Raddaoui, Zeineb
Albedah, Mohammed A.
Brahem, Rahma Ayed
Jbeli, Anouar
Elkossi, Safwen
Jemai, Dhahri
Belmabrouk, Hafedh
description The ceramic compound Ba 0.97 Bi 0.02 Ti 0.9 Zr 0.05 Nb 0.04 O 3 has been fabricated via a molten-salt method to investigate the effect of temperature on the dielectric properties and conduction mechanism. The XRD results suggest that the investigated compound's main phase crystallizes in a pseudo-cubic structure with a space group (Pm − 3 m). The values of the conductivity at small frequencies increase significantly versus the temperature, indicating that the present ceramic behaves as a semiconductor material. The variation of the ac-conductivity versus the frequency was found to obey the Jonscher power law. The conduction mechanism was explained by the Correlated Barrier Hopping behavior. The complex impedance measurements showed that the Nyquist plots were adjusted by an appropriate equivalent circuit. The electric modulus findings revealed the observed relaxation is thermally activated and this is attributed to the non-Debye relaxation and the mechanism of space charge relaxation of the Maxwell–Wagner process. The experimental data suggest that the permittivity decreases with increasing frequency. The noticed behavior may be explained by extrinsic Maxwell–Wagner effects responsible for electrical conduction. The sample has a high dielectric constant and is a potential candidate for energy storage applications.
doi_str_mv 10.1007/s10904-023-02937-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067416654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067416654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-22156bdaacf73d72ce26894a0ff8daaaeafb68a0a2b66d7a48d43036edb2f25c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssU4ZP2InS1rKQyqURdmwsRzHpqnapNiJKvh63AbBjoXH45l7rqWL0CWBEQGQ14FADjwByuLJmUx2R2hAUskTwlNy_NtzdorOQlgBsAxSMkBfU-esaXHj8MJuttbrtvMWNzVulxZPmrrsTFvF55M1S11XYYN1XeLbyq4j5iuDX3wTsbayYW9yoKLLJm7GGka5HFcwArqINX_zsU2fi1j5nJ2jE6fXwV783EP0ejddTB6S2fz-cXIzSwwjeZtQSlJRlFobJ1kpqbFUZDnX4FwWp9pqV4hMg6aFEKXUPCs5AyZsWVBHU8OG6Kr33frmo7OhVaum83X8UjEQkhMhUh5VtFcZ34TgrVNbX220_1QE1D5j1WesYsbqkLHaRYj1UIji-t36P-t_qG8CtX4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067416654</pqid></control><display><type>article</type><title>Effect of Temperature on the Conduction Mechanism and Dielectric Properties of the Ceramic Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3</title><source>SpringerLink Journals - AutoHoldings</source><creator>Raddaoui, Zeineb ; Albedah, Mohammed A. ; Brahem, Rahma Ayed ; Jbeli, Anouar ; Elkossi, Safwen ; Jemai, Dhahri ; Belmabrouk, Hafedh</creator><creatorcontrib>Raddaoui, Zeineb ; Albedah, Mohammed A. ; Brahem, Rahma Ayed ; Jbeli, Anouar ; Elkossi, Safwen ; Jemai, Dhahri ; Belmabrouk, Hafedh</creatorcontrib><description>The ceramic compound Ba 0.97 Bi 0.02 Ti 0.9 Zr 0.05 Nb 0.04 O 3 has been fabricated via a molten-salt method to investigate the effect of temperature on the dielectric properties and conduction mechanism. The XRD results suggest that the investigated compound's main phase crystallizes in a pseudo-cubic structure with a space group (Pm − 3 m). The values of the conductivity at small frequencies increase significantly versus the temperature, indicating that the present ceramic behaves as a semiconductor material. The variation of the ac-conductivity versus the frequency was found to obey the Jonscher power law. The conduction mechanism was explained by the Correlated Barrier Hopping behavior. The complex impedance measurements showed that the Nyquist plots were adjusted by an appropriate equivalent circuit. The electric modulus findings revealed the observed relaxation is thermally activated and this is attributed to the non-Debye relaxation and the mechanism of space charge relaxation of the Maxwell–Wagner process. The experimental data suggest that the permittivity decreases with increasing frequency. The noticed behavior may be explained by extrinsic Maxwell–Wagner effects responsible for electrical conduction. The sample has a high dielectric constant and is a potential candidate for energy storage applications.</description><identifier>ISSN: 1574-1443</identifier><identifier>EISSN: 1574-1451</identifier><identifier>DOI: 10.1007/s10904-023-02937-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Chemistry ; Chemistry and Materials Science ; Dielectric properties ; Electrical conduction ; Energy storage ; Equivalent circuits ; Inorganic Chemistry ; Nyquist plots ; Organic Chemistry ; Permittivity ; Polymer Sciences ; Semiconductor materials ; Space charge ; Temperature effects</subject><ispartof>Journal of inorganic and organometallic polymers and materials, 2024, Vol.34 (5), p.1920-1930</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-22156bdaacf73d72ce26894a0ff8daaaeafb68a0a2b66d7a48d43036edb2f25c3</citedby><cites>FETCH-LOGICAL-c319t-22156bdaacf73d72ce26894a0ff8daaaeafb68a0a2b66d7a48d43036edb2f25c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10904-023-02937-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10904-023-02937-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Raddaoui, Zeineb</creatorcontrib><creatorcontrib>Albedah, Mohammed A.</creatorcontrib><creatorcontrib>Brahem, Rahma Ayed</creatorcontrib><creatorcontrib>Jbeli, Anouar</creatorcontrib><creatorcontrib>Elkossi, Safwen</creatorcontrib><creatorcontrib>Jemai, Dhahri</creatorcontrib><creatorcontrib>Belmabrouk, Hafedh</creatorcontrib><title>Effect of Temperature on the Conduction Mechanism and Dielectric Properties of the Ceramic Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3</title><title>Journal of inorganic and organometallic polymers and materials</title><addtitle>J Inorg Organomet Polym</addtitle><description>The ceramic compound Ba 0.97 Bi 0.02 Ti 0.9 Zr 0.05 Nb 0.04 O 3 has been fabricated via a molten-salt method to investigate the effect of temperature on the dielectric properties and conduction mechanism. The XRD results suggest that the investigated compound's main phase crystallizes in a pseudo-cubic structure with a space group (Pm − 3 m). The values of the conductivity at small frequencies increase significantly versus the temperature, indicating that the present ceramic behaves as a semiconductor material. The variation of the ac-conductivity versus the frequency was found to obey the Jonscher power law. The conduction mechanism was explained by the Correlated Barrier Hopping behavior. The complex impedance measurements showed that the Nyquist plots were adjusted by an appropriate equivalent circuit. The electric modulus findings revealed the observed relaxation is thermally activated and this is attributed to the non-Debye relaxation and the mechanism of space charge relaxation of the Maxwell–Wagner process. The experimental data suggest that the permittivity decreases with increasing frequency. The noticed behavior may be explained by extrinsic Maxwell–Wagner effects responsible for electrical conduction. The sample has a high dielectric constant and is a potential candidate for energy storage applications.</description><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Dielectric properties</subject><subject>Electrical conduction</subject><subject>Energy storage</subject><subject>Equivalent circuits</subject><subject>Inorganic Chemistry</subject><subject>Nyquist plots</subject><subject>Organic Chemistry</subject><subject>Permittivity</subject><subject>Polymer Sciences</subject><subject>Semiconductor materials</subject><subject>Space charge</subject><subject>Temperature effects</subject><issn>1574-1443</issn><issn>1574-1451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssU4ZP2InS1rKQyqURdmwsRzHpqnapNiJKvh63AbBjoXH45l7rqWL0CWBEQGQ14FADjwByuLJmUx2R2hAUskTwlNy_NtzdorOQlgBsAxSMkBfU-esaXHj8MJuttbrtvMWNzVulxZPmrrsTFvF55M1S11XYYN1XeLbyq4j5iuDX3wTsbayYW9yoKLLJm7GGka5HFcwArqINX_zsU2fi1j5nJ2jE6fXwV783EP0ejddTB6S2fz-cXIzSwwjeZtQSlJRlFobJ1kpqbFUZDnX4FwWp9pqV4hMg6aFEKXUPCs5AyZsWVBHU8OG6Kr33frmo7OhVaum83X8UjEQkhMhUh5VtFcZ34TgrVNbX220_1QE1D5j1WesYsbqkLHaRYj1UIji-t36P-t_qG8CtX4A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Raddaoui, Zeineb</creator><creator>Albedah, Mohammed A.</creator><creator>Brahem, Rahma Ayed</creator><creator>Jbeli, Anouar</creator><creator>Elkossi, Safwen</creator><creator>Jemai, Dhahri</creator><creator>Belmabrouk, Hafedh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Effect of Temperature on the Conduction Mechanism and Dielectric Properties of the Ceramic Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3</title><author>Raddaoui, Zeineb ; Albedah, Mohammed A. ; Brahem, Rahma Ayed ; Jbeli, Anouar ; Elkossi, Safwen ; Jemai, Dhahri ; Belmabrouk, Hafedh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-22156bdaacf73d72ce26894a0ff8daaaeafb68a0a2b66d7a48d43036edb2f25c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Dielectric properties</topic><topic>Electrical conduction</topic><topic>Energy storage</topic><topic>Equivalent circuits</topic><topic>Inorganic Chemistry</topic><topic>Nyquist plots</topic><topic>Organic Chemistry</topic><topic>Permittivity</topic><topic>Polymer Sciences</topic><topic>Semiconductor materials</topic><topic>Space charge</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raddaoui, Zeineb</creatorcontrib><creatorcontrib>Albedah, Mohammed A.</creatorcontrib><creatorcontrib>Brahem, Rahma Ayed</creatorcontrib><creatorcontrib>Jbeli, Anouar</creatorcontrib><creatorcontrib>Elkossi, Safwen</creatorcontrib><creatorcontrib>Jemai, Dhahri</creatorcontrib><creatorcontrib>Belmabrouk, Hafedh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raddaoui, Zeineb</au><au>Albedah, Mohammed A.</au><au>Brahem, Rahma Ayed</au><au>Jbeli, Anouar</au><au>Elkossi, Safwen</au><au>Jemai, Dhahri</au><au>Belmabrouk, Hafedh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Temperature on the Conduction Mechanism and Dielectric Properties of the Ceramic Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3</atitle><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle><stitle>J Inorg Organomet Polym</stitle><date>2024</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1920</spage><epage>1930</epage><pages>1920-1930</pages><issn>1574-1443</issn><eissn>1574-1451</eissn><abstract>The ceramic compound Ba 0.97 Bi 0.02 Ti 0.9 Zr 0.05 Nb 0.04 O 3 has been fabricated via a molten-salt method to investigate the effect of temperature on the dielectric properties and conduction mechanism. The XRD results suggest that the investigated compound's main phase crystallizes in a pseudo-cubic structure with a space group (Pm − 3 m). The values of the conductivity at small frequencies increase significantly versus the temperature, indicating that the present ceramic behaves as a semiconductor material. The variation of the ac-conductivity versus the frequency was found to obey the Jonscher power law. The conduction mechanism was explained by the Correlated Barrier Hopping behavior. The complex impedance measurements showed that the Nyquist plots were adjusted by an appropriate equivalent circuit. The electric modulus findings revealed the observed relaxation is thermally activated and this is attributed to the non-Debye relaxation and the mechanism of space charge relaxation of the Maxwell–Wagner process. The experimental data suggest that the permittivity decreases with increasing frequency. The noticed behavior may be explained by extrinsic Maxwell–Wagner effects responsible for electrical conduction. The sample has a high dielectric constant and is a potential candidate for energy storage applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10904-023-02937-w</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1574-1443
ispartof Journal of inorganic and organometallic polymers and materials, 2024, Vol.34 (5), p.1920-1930
issn 1574-1443
1574-1451
language eng
recordid cdi_proquest_journals_3067416654
source SpringerLink Journals - AutoHoldings
subjects Ceramics
Chemistry
Chemistry and Materials Science
Dielectric properties
Electrical conduction
Energy storage
Equivalent circuits
Inorganic Chemistry
Nyquist plots
Organic Chemistry
Permittivity
Polymer Sciences
Semiconductor materials
Space charge
Temperature effects
title Effect of Temperature on the Conduction Mechanism and Dielectric Properties of the Ceramic Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Temperature%20on%20the%20Conduction%20Mechanism%20and%20Dielectric%20Properties%20of%20the%20Ceramic%20Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3&rft.jtitle=Journal%20of%20inorganic%20and%20organometallic%20polymers%20and%20materials&rft.au=Raddaoui,%20Zeineb&rft.date=2024&rft.volume=34&rft.issue=5&rft.spage=1920&rft.epage=1930&rft.pages=1920-1930&rft.issn=1574-1443&rft.eissn=1574-1451&rft_id=info:doi/10.1007/s10904-023-02937-w&rft_dat=%3Cproquest_cross%3E3067416654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067416654&rft_id=info:pmid/&rfr_iscdi=true