Dynamic marine spatial planning for conservation and fisheries benefits

The increasing global demand for marine resources raises concerns about sustainable resource management and biodiversity conservation. Spatial closures, such as marine protected areas, can be valuable tools for maintaining and restoring exploited populations. When these spatial closures adopt a dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish and fisheries (Oxford, England) England), 2024-07, Vol.25 (4), p.630-646
Hauptverfasser: Vigo, Maria, Hermoso, Virgilio, Navarro, Joan, Sala‐Coromina, Joan, Company, Joan B., Giakoumi, Sylvaine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 646
container_issue 4
container_start_page 630
container_title Fish and fisheries (Oxford, England)
container_volume 25
creator Vigo, Maria
Hermoso, Virgilio
Navarro, Joan
Sala‐Coromina, Joan
Company, Joan B.
Giakoumi, Sylvaine
description The increasing global demand for marine resources raises concerns about sustainable resource management and biodiversity conservation. Spatial closures, such as marine protected areas, can be valuable tools for maintaining and restoring exploited populations. When these spatial closures adopt a dynamic nature being adapted to the changing environment, they can effectively account for factors such as shifting species distributions, which enhances their potential to achieve ecological and socio‐economic objectives. Here, we adapted a decision‐support tool (the software Marxan), typically used for selecting static and permanent areas, to produce management recommendations that integrate permanent and temporal closures to fisheries. Our aim was to compare the outputs of a static network of permanent no‐take reserves with four other dynamic scenarios, including permanent and temporal closures that account for seasonal variations in the populations of species. All scenarios prioritized sites for the conservation of one of the most valuable European fishing stocks, the Norway lobster (Nephrops norvegicus). Additionally, we considered 12 other commercially exploited species captured by the Norway lobster fishery. The assessed outputs included retained biomass, area extent, closure type (permanent and seasonal) and opportunity costs within each scenario. We observed that all dynamic scenarios required fewer management areas permanently closed than the static scenario. This resulted in a lower opportunity cost for fisheries but also a higher capacity for biodiversity conservation. Therefore, complementing permanent with temporal closures could enhance biodiversity conservation and fisheries management. The novel dynamic planning method presented here could be applicable to other species, ecosystems and socio‐economic contexts.
doi_str_mv 10.1111/faf.12830
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067149914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067149914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3250-ce19408b3d7e1ffe936875b2400d096b1cbee1f5da2938c54f6d6df92e7c5e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yDgRQ_bJptsdnMs1Vah4EHvIZudaMo2uyZdpW9vdMWD4Fxm4P9mGD6ELimZ0VRzq-2M5hUjR2hCuSizXJby-HcW5BSdxbglhIiK8gla3x683jmDdzo4Dzj2eu90i_tWe-_8C7ZdwKbzEcJ7SjqPtW-wdfEVgoOIa_Bg3T6eoxOr2wgXP32KnlZ3z8v7bPO4flguNplheUEyA1RyUtWsKYFaC5KJqizqnBPSEClqampIQdHoXLLKFNyKRjRW5lCaAtgUXY9X-9C9DRD3aueigTY9C90QFaMFE6SqqEzo1R902w3Bp98UI6KkXErKE3UzUiZ0MQawqg8uqTgoStSXUJWEqm-hiZ2P7Idr4fA_qFaL1bjxCQdHdu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067149914</pqid></control><display><type>article</type><title>Dynamic marine spatial planning for conservation and fisheries benefits</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vigo, Maria ; Hermoso, Virgilio ; Navarro, Joan ; Sala‐Coromina, Joan ; Company, Joan B. ; Giakoumi, Sylvaine</creator><creatorcontrib>Vigo, Maria ; Hermoso, Virgilio ; Navarro, Joan ; Sala‐Coromina, Joan ; Company, Joan B. ; Giakoumi, Sylvaine</creatorcontrib><description>The increasing global demand for marine resources raises concerns about sustainable resource management and biodiversity conservation. Spatial closures, such as marine protected areas, can be valuable tools for maintaining and restoring exploited populations. When these spatial closures adopt a dynamic nature being adapted to the changing environment, they can effectively account for factors such as shifting species distributions, which enhances their potential to achieve ecological and socio‐economic objectives. Here, we adapted a decision‐support tool (the software Marxan), typically used for selecting static and permanent areas, to produce management recommendations that integrate permanent and temporal closures to fisheries. Our aim was to compare the outputs of a static network of permanent no‐take reserves with four other dynamic scenarios, including permanent and temporal closures that account for seasonal variations in the populations of species. All scenarios prioritized sites for the conservation of one of the most valuable European fishing stocks, the Norway lobster (Nephrops norvegicus). Additionally, we considered 12 other commercially exploited species captured by the Norway lobster fishery. The assessed outputs included retained biomass, area extent, closure type (permanent and seasonal) and opportunity costs within each scenario. We observed that all dynamic scenarios required fewer management areas permanently closed than the static scenario. This resulted in a lower opportunity cost for fisheries but also a higher capacity for biodiversity conservation. Therefore, complementing permanent with temporal closures could enhance biodiversity conservation and fisheries management. The novel dynamic planning method presented here could be applicable to other species, ecosystems and socio‐economic contexts.</description><identifier>ISSN: 1467-2960</identifier><identifier>EISSN: 1467-2979</identifier><identifier>DOI: 10.1111/faf.12830</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Biodiversity ; biodiversity conservation ; biomass ; Changing environments ; computer software ; Conservation ; decision support systems ; dynamic planning ; Economics ; Environmental changes ; Environmental planning ; Exploitation ; fish ; Fish stocks ; Fisheries ; Fisheries management ; Fishery management ; Fishing ; Lobster fisheries ; Lobsters ; Marine crustaceans ; Marine protected areas ; Marine resources ; marine spatial planning ; Marxan software ; Nephrops norvegicus ; no‐take marine reserves ; Opportunity costs ; Populations ; Protected areas ; Resource management ; Seasonal variation ; Seasonal variations ; Shellfish ; socioeconomics ; Software ; Spatial planning ; species ; temporal closures</subject><ispartof>Fish and fisheries (Oxford, England), 2024-07, Vol.25 (4), p.630-646</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3250-ce19408b3d7e1ffe936875b2400d096b1cbee1f5da2938c54f6d6df92e7c5e3</cites><orcidid>0000-0003-4267-0160 ; 0000-0002-5756-9543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffaf.12830$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffaf.12830$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids></links><search><creatorcontrib>Vigo, Maria</creatorcontrib><creatorcontrib>Hermoso, Virgilio</creatorcontrib><creatorcontrib>Navarro, Joan</creatorcontrib><creatorcontrib>Sala‐Coromina, Joan</creatorcontrib><creatorcontrib>Company, Joan B.</creatorcontrib><creatorcontrib>Giakoumi, Sylvaine</creatorcontrib><title>Dynamic marine spatial planning for conservation and fisheries benefits</title><title>Fish and fisheries (Oxford, England)</title><description>The increasing global demand for marine resources raises concerns about sustainable resource management and biodiversity conservation. Spatial closures, such as marine protected areas, can be valuable tools for maintaining and restoring exploited populations. When these spatial closures adopt a dynamic nature being adapted to the changing environment, they can effectively account for factors such as shifting species distributions, which enhances their potential to achieve ecological and socio‐economic objectives. Here, we adapted a decision‐support tool (the software Marxan), typically used for selecting static and permanent areas, to produce management recommendations that integrate permanent and temporal closures to fisheries. Our aim was to compare the outputs of a static network of permanent no‐take reserves with four other dynamic scenarios, including permanent and temporal closures that account for seasonal variations in the populations of species. All scenarios prioritized sites for the conservation of one of the most valuable European fishing stocks, the Norway lobster (Nephrops norvegicus). Additionally, we considered 12 other commercially exploited species captured by the Norway lobster fishery. The assessed outputs included retained biomass, area extent, closure type (permanent and seasonal) and opportunity costs within each scenario. We observed that all dynamic scenarios required fewer management areas permanently closed than the static scenario. This resulted in a lower opportunity cost for fisheries but also a higher capacity for biodiversity conservation. Therefore, complementing permanent with temporal closures could enhance biodiversity conservation and fisheries management. The novel dynamic planning method presented here could be applicable to other species, ecosystems and socio‐economic contexts.</description><subject>Biodiversity</subject><subject>biodiversity conservation</subject><subject>biomass</subject><subject>Changing environments</subject><subject>computer software</subject><subject>Conservation</subject><subject>decision support systems</subject><subject>dynamic planning</subject><subject>Economics</subject><subject>Environmental changes</subject><subject>Environmental planning</subject><subject>Exploitation</subject><subject>fish</subject><subject>Fish stocks</subject><subject>Fisheries</subject><subject>Fisheries management</subject><subject>Fishery management</subject><subject>Fishing</subject><subject>Lobster fisheries</subject><subject>Lobsters</subject><subject>Marine crustaceans</subject><subject>Marine protected areas</subject><subject>Marine resources</subject><subject>marine spatial planning</subject><subject>Marxan software</subject><subject>Nephrops norvegicus</subject><subject>no‐take marine reserves</subject><subject>Opportunity costs</subject><subject>Populations</subject><subject>Protected areas</subject><subject>Resource management</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Shellfish</subject><subject>socioeconomics</subject><subject>Software</subject><subject>Spatial planning</subject><subject>species</subject><subject>temporal closures</subject><issn>1467-2960</issn><issn>1467-2979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kMFKAzEQhoMoWKsH3yDgRQ_bJptsdnMs1Vah4EHvIZudaMo2uyZdpW9vdMWD4Fxm4P9mGD6ELimZ0VRzq-2M5hUjR2hCuSizXJby-HcW5BSdxbglhIiK8gla3x683jmDdzo4Dzj2eu90i_tWe-_8C7ZdwKbzEcJ7SjqPtW-wdfEVgoOIa_Bg3T6eoxOr2wgXP32KnlZ3z8v7bPO4flguNplheUEyA1RyUtWsKYFaC5KJqizqnBPSEClqampIQdHoXLLKFNyKRjRW5lCaAtgUXY9X-9C9DRD3aueigTY9C90QFaMFE6SqqEzo1R902w3Bp98UI6KkXErKE3UzUiZ0MQawqg8uqTgoStSXUJWEqm-hiZ2P7Idr4fA_qFaL1bjxCQdHdu8</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Vigo, Maria</creator><creator>Hermoso, Virgilio</creator><creator>Navarro, Joan</creator><creator>Sala‐Coromina, Joan</creator><creator>Company, Joan B.</creator><creator>Giakoumi, Sylvaine</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4267-0160</orcidid><orcidid>https://orcid.org/0000-0002-5756-9543</orcidid></search><sort><creationdate>202407</creationdate><title>Dynamic marine spatial planning for conservation and fisheries benefits</title><author>Vigo, Maria ; Hermoso, Virgilio ; Navarro, Joan ; Sala‐Coromina, Joan ; Company, Joan B. ; Giakoumi, Sylvaine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3250-ce19408b3d7e1ffe936875b2400d096b1cbee1f5da2938c54f6d6df92e7c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biodiversity</topic><topic>biodiversity conservation</topic><topic>biomass</topic><topic>Changing environments</topic><topic>computer software</topic><topic>Conservation</topic><topic>decision support systems</topic><topic>dynamic planning</topic><topic>Economics</topic><topic>Environmental changes</topic><topic>Environmental planning</topic><topic>Exploitation</topic><topic>fish</topic><topic>Fish stocks</topic><topic>Fisheries</topic><topic>Fisheries management</topic><topic>Fishery management</topic><topic>Fishing</topic><topic>Lobster fisheries</topic><topic>Lobsters</topic><topic>Marine crustaceans</topic><topic>Marine protected areas</topic><topic>Marine resources</topic><topic>marine spatial planning</topic><topic>Marxan software</topic><topic>Nephrops norvegicus</topic><topic>no‐take marine reserves</topic><topic>Opportunity costs</topic><topic>Populations</topic><topic>Protected areas</topic><topic>Resource management</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Shellfish</topic><topic>socioeconomics</topic><topic>Software</topic><topic>Spatial planning</topic><topic>species</topic><topic>temporal closures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigo, Maria</creatorcontrib><creatorcontrib>Hermoso, Virgilio</creatorcontrib><creatorcontrib>Navarro, Joan</creatorcontrib><creatorcontrib>Sala‐Coromina, Joan</creatorcontrib><creatorcontrib>Company, Joan B.</creatorcontrib><creatorcontrib>Giakoumi, Sylvaine</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Fish and fisheries (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigo, Maria</au><au>Hermoso, Virgilio</au><au>Navarro, Joan</au><au>Sala‐Coromina, Joan</au><au>Company, Joan B.</au><au>Giakoumi, Sylvaine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic marine spatial planning for conservation and fisheries benefits</atitle><jtitle>Fish and fisheries (Oxford, England)</jtitle><date>2024-07</date><risdate>2024</risdate><volume>25</volume><issue>4</issue><spage>630</spage><epage>646</epage><pages>630-646</pages><issn>1467-2960</issn><eissn>1467-2979</eissn><abstract>The increasing global demand for marine resources raises concerns about sustainable resource management and biodiversity conservation. Spatial closures, such as marine protected areas, can be valuable tools for maintaining and restoring exploited populations. When these spatial closures adopt a dynamic nature being adapted to the changing environment, they can effectively account for factors such as shifting species distributions, which enhances their potential to achieve ecological and socio‐economic objectives. Here, we adapted a decision‐support tool (the software Marxan), typically used for selecting static and permanent areas, to produce management recommendations that integrate permanent and temporal closures to fisheries. Our aim was to compare the outputs of a static network of permanent no‐take reserves with four other dynamic scenarios, including permanent and temporal closures that account for seasonal variations in the populations of species. All scenarios prioritized sites for the conservation of one of the most valuable European fishing stocks, the Norway lobster (Nephrops norvegicus). Additionally, we considered 12 other commercially exploited species captured by the Norway lobster fishery. The assessed outputs included retained biomass, area extent, closure type (permanent and seasonal) and opportunity costs within each scenario. We observed that all dynamic scenarios required fewer management areas permanently closed than the static scenario. This resulted in a lower opportunity cost for fisheries but also a higher capacity for biodiversity conservation. Therefore, complementing permanent with temporal closures could enhance biodiversity conservation and fisheries management. The novel dynamic planning method presented here could be applicable to other species, ecosystems and socio‐economic contexts.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/faf.12830</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4267-0160</orcidid><orcidid>https://orcid.org/0000-0002-5756-9543</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-2960
ispartof Fish and fisheries (Oxford, England), 2024-07, Vol.25 (4), p.630-646
issn 1467-2960
1467-2979
language eng
recordid cdi_proquest_journals_3067149914
source Wiley Online Library Journals Frontfile Complete
subjects Biodiversity
biodiversity conservation
biomass
Changing environments
computer software
Conservation
decision support systems
dynamic planning
Economics
Environmental changes
Environmental planning
Exploitation
fish
Fish stocks
Fisheries
Fisheries management
Fishery management
Fishing
Lobster fisheries
Lobsters
Marine crustaceans
Marine protected areas
Marine resources
marine spatial planning
Marxan software
Nephrops norvegicus
no‐take marine reserves
Opportunity costs
Populations
Protected areas
Resource management
Seasonal variation
Seasonal variations
Shellfish
socioeconomics
Software
Spatial planning
species
temporal closures
title Dynamic marine spatial planning for conservation and fisheries benefits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20marine%20spatial%20planning%20for%20conservation%20and%20fisheries%20benefits&rft.jtitle=Fish%20and%20fisheries%20(Oxford,%20England)&rft.au=Vigo,%20Maria&rft.date=2024-07&rft.volume=25&rft.issue=4&rft.spage=630&rft.epage=646&rft.pages=630-646&rft.issn=1467-2960&rft.eissn=1467-2979&rft_id=info:doi/10.1111/faf.12830&rft_dat=%3Cproquest_cross%3E3067149914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067149914&rft_id=info:pmid/&rfr_iscdi=true