The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer

The wide band gap semiconductor Ga 2 O 3 has become an excellent UV detection material due to its suitable band gap, high crystalline quality and thermal stability. In this paper, the microstructure of Ga 2 O 3 with different thicknesses is characterized and the solar-blind detection performance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2024-06, Vol.35 (17), p.1125, Article 1125
Hauptverfasser: Zhang, Q., Gao, H. L., Deng, J. X., Meng, X., Tian, K., Xu, J. W., Yang, X. L., Kong, L., Meng, L. J., Du, J., Yang, Q. Q., Wang, G. S., Meng, J. H., Wang, X. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 1125
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Zhang, Q.
Gao, H. L.
Deng, J. X.
Meng, X.
Tian, K.
Xu, J. W.
Yang, X. L.
Kong, L.
Meng, L. J.
Du, J.
Yang, Q. Q.
Wang, G. S.
Meng, J. H.
Wang, X. L.
description The wide band gap semiconductor Ga 2 O 3 has become an excellent UV detection material due to its suitable band gap, high crystalline quality and thermal stability. In this paper, the microstructure of Ga 2 O 3 with different thicknesses is characterized and the solar-blind detection performance of Ga 2 O 3 /p-Si heterojunctions are further investigated. XRD and UV–VIS demonstrate that Ga 2 O 3 sputtered for 20 min is amorphous with a band gap of 4.98 eV, as the sputtering time increases, Ga 2 O 3 grows along the (002) crystal plane and the band gap increases. XPS reveals that the lattice oxygen content in the Ga 2 O 3 increases with the sputtering time, however, the Ga 3+ content reaches a peak in Ga 2 O 3 sputtered for 1.5 h. And the increasing of the binding energy between Ga-O in Ga 2 O 3 /p-Si heterojunctions accelerates response speed. Electrical experiments show that the heterojunction consisting of sputtered 1.5 h Ga 2 O 3 and p-Si reaches a higher PDCR, with a value of 6684 at 5.7 V. Meanwhile, the rise and decay time of the heterojunction are 0.13 s and 0.14 s at 0 V, and the decay time gradually increases from 0.1 to 0.7 s with increasing the applied voltage. However, insertion of 20 nm Si-doped Ga 2 O 3 as a hole-blocking layer at the interface of p-Si and Ga 2 O 3 remarkably declines the decay time under various applied biases and causes no obvious damage to the photo current of the heterojunction.
doi_str_mv 10.1007/s10854-024-12897-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067128284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067128284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-873e42f08c32dfeb4b73606d2a10f2ca066cd7367ccb813f6412c2b8d3e634633</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc-zko0l6lKJVKPRgBW8hm822W7ebmuwq_femreDNywzM-zHwIHRL4Z4CqFGioMeCABOEMj1RRJ2hAR0rToRm7-doAJOxImLM2CW6SmkDAFJwPUD9cu3xzscqxK1tncehwn3TRftVh8Z3OIXGRlI0dVvi0nfedXVoD6Ydea1HLZlZtuB4nZUYNn17lBP-rrv16DBC3-F1LsoNwX3U7Qo3du_jNbqobJP8ze8eorenx-X0mcwXs5fpw5w4BtARrbgXrALtOCsrX4hCcQmyZJZCxZwFKV2ZT8q5QlNeSUGZY4UuuZdcSM6H6O7Uu4vhs_epM5vQxza_NBykyqiYFtnFTi4XQ0rRV2YX662Ne0PBHPCaE16T8ZojXqNyiJ9CKZvblY9_1f-kfgDMqH7G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067128284</pqid></control><display><type>article</type><title>The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer</title><source>SpringerNature Journals</source><creator>Zhang, Q. ; Gao, H. L. ; Deng, J. X. ; Meng, X. ; Tian, K. ; Xu, J. W. ; Yang, X. L. ; Kong, L. ; Meng, L. J. ; Du, J. ; Yang, Q. Q. ; Wang, G. S. ; Meng, J. H. ; Wang, X. L.</creator><creatorcontrib>Zhang, Q. ; Gao, H. L. ; Deng, J. X. ; Meng, X. ; Tian, K. ; Xu, J. W. ; Yang, X. L. ; Kong, L. ; Meng, L. J. ; Du, J. ; Yang, Q. Q. ; Wang, G. S. ; Meng, J. H. ; Wang, X. L.</creatorcontrib><description>The wide band gap semiconductor Ga 2 O 3 has become an excellent UV detection material due to its suitable band gap, high crystalline quality and thermal stability. In this paper, the microstructure of Ga 2 O 3 with different thicknesses is characterized and the solar-blind detection performance of Ga 2 O 3 /p-Si heterojunctions are further investigated. XRD and UV–VIS demonstrate that Ga 2 O 3 sputtered for 20 min is amorphous with a band gap of 4.98 eV, as the sputtering time increases, Ga 2 O 3 grows along the (002) crystal plane and the band gap increases. XPS reveals that the lattice oxygen content in the Ga 2 O 3 increases with the sputtering time, however, the Ga 3+ content reaches a peak in Ga 2 O 3 sputtered for 1.5 h. And the increasing of the binding energy between Ga-O in Ga 2 O 3 /p-Si heterojunctions accelerates response speed. Electrical experiments show that the heterojunction consisting of sputtered 1.5 h Ga 2 O 3 and p-Si reaches a higher PDCR, with a value of 6684 at 5.7 V. Meanwhile, the rise and decay time of the heterojunction are 0.13 s and 0.14 s at 0 V, and the decay time gradually increases from 0.1 to 0.7 s with increasing the applied voltage. However, insertion of 20 nm Si-doped Ga 2 O 3 as a hole-blocking layer at the interface of p-Si and Ga 2 O 3 remarkably declines the decay time under various applied biases and causes no obvious damage to the photo current of the heterojunction.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-12897-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal lattices ; Decay ; Energy gap ; Gallium oxides ; Heterojunctions ; Materials Science ; Optical and Electronic Materials ; Oxygen content ; Research methodology ; Silicon ; Sputtering ; Thermal stability</subject><ispartof>Journal of materials science. Materials in electronics, 2024-06, Vol.35 (17), p.1125, Article 1125</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-873e42f08c32dfeb4b73606d2a10f2ca066cd7367ccb813f6412c2b8d3e634633</cites><orcidid>0000-0002-6687-1883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-12897-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-12897-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Zhang, Q.</creatorcontrib><creatorcontrib>Gao, H. L.</creatorcontrib><creatorcontrib>Deng, J. X.</creatorcontrib><creatorcontrib>Meng, X.</creatorcontrib><creatorcontrib>Tian, K.</creatorcontrib><creatorcontrib>Xu, J. W.</creatorcontrib><creatorcontrib>Yang, X. L.</creatorcontrib><creatorcontrib>Kong, L.</creatorcontrib><creatorcontrib>Meng, L. J.</creatorcontrib><creatorcontrib>Du, J.</creatorcontrib><creatorcontrib>Yang, Q. Q.</creatorcontrib><creatorcontrib>Wang, G. S.</creatorcontrib><creatorcontrib>Meng, J. H.</creatorcontrib><creatorcontrib>Wang, X. L.</creatorcontrib><title>The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The wide band gap semiconductor Ga 2 O 3 has become an excellent UV detection material due to its suitable band gap, high crystalline quality and thermal stability. In this paper, the microstructure of Ga 2 O 3 with different thicknesses is characterized and the solar-blind detection performance of Ga 2 O 3 /p-Si heterojunctions are further investigated. XRD and UV–VIS demonstrate that Ga 2 O 3 sputtered for 20 min is amorphous with a band gap of 4.98 eV, as the sputtering time increases, Ga 2 O 3 grows along the (002) crystal plane and the band gap increases. XPS reveals that the lattice oxygen content in the Ga 2 O 3 increases with the sputtering time, however, the Ga 3+ content reaches a peak in Ga 2 O 3 sputtered for 1.5 h. And the increasing of the binding energy between Ga-O in Ga 2 O 3 /p-Si heterojunctions accelerates response speed. Electrical experiments show that the heterojunction consisting of sputtered 1.5 h Ga 2 O 3 and p-Si reaches a higher PDCR, with a value of 6684 at 5.7 V. Meanwhile, the rise and decay time of the heterojunction are 0.13 s and 0.14 s at 0 V, and the decay time gradually increases from 0.1 to 0.7 s with increasing the applied voltage. However, insertion of 20 nm Si-doped Ga 2 O 3 as a hole-blocking layer at the interface of p-Si and Ga 2 O 3 remarkably declines the decay time under various applied biases and causes no obvious damage to the photo current of the heterojunction.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal lattices</subject><subject>Decay</subject><subject>Energy gap</subject><subject>Gallium oxides</subject><subject>Heterojunctions</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen content</subject><subject>Research methodology</subject><subject>Silicon</subject><subject>Sputtering</subject><subject>Thermal stability</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc-zko0l6lKJVKPRgBW8hm822W7ebmuwq_femreDNywzM-zHwIHRL4Z4CqFGioMeCABOEMj1RRJ2hAR0rToRm7-doAJOxImLM2CW6SmkDAFJwPUD9cu3xzscqxK1tncehwn3TRftVh8Z3OIXGRlI0dVvi0nfedXVoD6Ydea1HLZlZtuB4nZUYNn17lBP-rrv16DBC3-F1LsoNwX3U7Qo3du_jNbqobJP8ze8eorenx-X0mcwXs5fpw5w4BtARrbgXrALtOCsrX4hCcQmyZJZCxZwFKV2ZT8q5QlNeSUGZY4UuuZdcSM6H6O7Uu4vhs_epM5vQxza_NBykyqiYFtnFTi4XQ0rRV2YX662Ne0PBHPCaE16T8ZojXqNyiJ9CKZvblY9_1f-kfgDMqH7G</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Q.</creator><creator>Gao, H. L.</creator><creator>Deng, J. X.</creator><creator>Meng, X.</creator><creator>Tian, K.</creator><creator>Xu, J. W.</creator><creator>Yang, X. L.</creator><creator>Kong, L.</creator><creator>Meng, L. J.</creator><creator>Du, J.</creator><creator>Yang, Q. Q.</creator><creator>Wang, G. S.</creator><creator>Meng, J. H.</creator><creator>Wang, X. L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6687-1883</orcidid></search><sort><creationdate>20240601</creationdate><title>The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer</title><author>Zhang, Q. ; Gao, H. L. ; Deng, J. X. ; Meng, X. ; Tian, K. ; Xu, J. W. ; Yang, X. L. ; Kong, L. ; Meng, L. J. ; Du, J. ; Yang, Q. Q. ; Wang, G. S. ; Meng, J. H. ; Wang, X. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-873e42f08c32dfeb4b73606d2a10f2ca066cd7367ccb813f6412c2b8d3e634633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal lattices</topic><topic>Decay</topic><topic>Energy gap</topic><topic>Gallium oxides</topic><topic>Heterojunctions</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen content</topic><topic>Research methodology</topic><topic>Silicon</topic><topic>Sputtering</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Q.</creatorcontrib><creatorcontrib>Gao, H. L.</creatorcontrib><creatorcontrib>Deng, J. X.</creatorcontrib><creatorcontrib>Meng, X.</creatorcontrib><creatorcontrib>Tian, K.</creatorcontrib><creatorcontrib>Xu, J. W.</creatorcontrib><creatorcontrib>Yang, X. L.</creatorcontrib><creatorcontrib>Kong, L.</creatorcontrib><creatorcontrib>Meng, L. J.</creatorcontrib><creatorcontrib>Du, J.</creatorcontrib><creatorcontrib>Yang, Q. Q.</creatorcontrib><creatorcontrib>Wang, G. S.</creatorcontrib><creatorcontrib>Meng, J. H.</creatorcontrib><creatorcontrib>Wang, X. L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Q.</au><au>Gao, H. L.</au><au>Deng, J. X.</au><au>Meng, X.</au><au>Tian, K.</au><au>Xu, J. W.</au><au>Yang, X. L.</au><au>Kong, L.</au><au>Meng, L. J.</au><au>Du, J.</au><au>Yang, Q. Q.</au><au>Wang, G. S.</au><au>Meng, J. H.</au><au>Wang, X. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>35</volume><issue>17</issue><spage>1125</spage><pages>1125-</pages><artnum>1125</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The wide band gap semiconductor Ga 2 O 3 has become an excellent UV detection material due to its suitable band gap, high crystalline quality and thermal stability. In this paper, the microstructure of Ga 2 O 3 with different thicknesses is characterized and the solar-blind detection performance of Ga 2 O 3 /p-Si heterojunctions are further investigated. XRD and UV–VIS demonstrate that Ga 2 O 3 sputtered for 20 min is amorphous with a band gap of 4.98 eV, as the sputtering time increases, Ga 2 O 3 grows along the (002) crystal plane and the band gap increases. XPS reveals that the lattice oxygen content in the Ga 2 O 3 increases with the sputtering time, however, the Ga 3+ content reaches a peak in Ga 2 O 3 sputtered for 1.5 h. And the increasing of the binding energy between Ga-O in Ga 2 O 3 /p-Si heterojunctions accelerates response speed. Electrical experiments show that the heterojunction consisting of sputtered 1.5 h Ga 2 O 3 and p-Si reaches a higher PDCR, with a value of 6684 at 5.7 V. Meanwhile, the rise and decay time of the heterojunction are 0.13 s and 0.14 s at 0 V, and the decay time gradually increases from 0.1 to 0.7 s with increasing the applied voltage. However, insertion of 20 nm Si-doped Ga 2 O 3 as a hole-blocking layer at the interface of p-Si and Ga 2 O 3 remarkably declines the decay time under various applied biases and causes no obvious damage to the photo current of the heterojunction.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-12897-7</doi><orcidid>https://orcid.org/0000-0002-6687-1883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024-06, Vol.35 (17), p.1125, Article 1125
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_3067128284
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal lattices
Decay
Energy gap
Gallium oxides
Heterojunctions
Materials Science
Optical and Electronic Materials
Oxygen content
Research methodology
Silicon
Sputtering
Thermal stability
title The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20performance%20of%20ultraviolet%20solar-blind%20detection%20of%20p-Si/n-Ga2O3%20heterojunctions%20with/without%20hole-blocking%20layer&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Q.&rft.date=2024-06-01&rft.volume=35&rft.issue=17&rft.spage=1125&rft.pages=1125-&rft.artnum=1125&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-12897-7&rft_dat=%3Cproquest_cross%3E3067128284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067128284&rft_id=info:pmid/&rfr_iscdi=true