Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture

Summary This paper replicates the results of the stochastic volatility–Dirichlet process mixture (SV‐DPM) models proposed in Jensen and Maheu (2010) in both a narrow and a wide sense. By using a normal‐Wishart prior and the collapsed Gibbs sampling method, our algorithm can be applied for more gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2024-06, Vol.39 (4), p.697-704
1. Verfasser: Wu, Frank C. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 4
container_start_page 697
container_title Journal of applied econometrics (Chichester, England)
container_volume 39
creator Wu, Frank C. Z.
description Summary This paper replicates the results of the stochastic volatility–Dirichlet process mixture (SV‐DPM) models proposed in Jensen and Maheu (2010) in both a narrow and a wide sense. By using a normal‐Wishart prior and the collapsed Gibbs sampling method, our algorithm can be applied for more general settings, and it is more efficient for sampling the Dirichlet process mixture. For the stochastic volatility component, we adopt the method in Chan (2017) to further increase the overall efficiency of our algorithm. Using the same dataset, we obtain mixed results. Some of the results have significant differences. If we use recent time period dataset, which includes the COVID‐19 pandemic period, the log market portfolio volatility seems to increase in terms of the number of clusters and size of magnitude.
doi_str_mv 10.1002/jae.3040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067106030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067106030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3440-13079bc2d1f2abc617dc693840faaaa39dab6ab70026a161ec4d74dabc180c743</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs4p-BECXrx0vjRt0x6nzqkMvOg5pGnqMtKmJpmz397MCZ7M5UH48X-8P0KXBGYEIL3ZCDWjkMERmhCoqoSkeX6MJlCWNGFpnp6iM-83AFAAsAlqbsWovBY9ltYYMXjV4KWua4-96Aaj-3fcWocF9sHKtfBBS_xpjQja6DDizjbK4J0O60jutdNybVTAg7NSeY87_RW2Tp2jk1YYry5-5xS9PSxe7x6T1cvy6W6-SiTNMkgIBVbVMm1Im4paFoQ1sqhomUEr4qNVI-pC1CyeWQhSECWzhmXxU5ISJMvoFF0dcuP-j63ygW_s1vVxJadQMBJvphDV9UFJZ713quWD051wIyfA9x3y2CHfdxgpPlAlba_9HyyrlOWEsDKS5EB22qjx3yj-PF_8RH4DCwV9ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067106030</pqid></control><display><type>article</type><title>Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Frank C. Z.</creator><creatorcontrib>Wu, Frank C. Z.</creatorcontrib><description>Summary This paper replicates the results of the stochastic volatility–Dirichlet process mixture (SV‐DPM) models proposed in Jensen and Maheu (2010) in both a narrow and a wide sense. By using a normal‐Wishart prior and the collapsed Gibbs sampling method, our algorithm can be applied for more general settings, and it is more efficient for sampling the Dirichlet process mixture. For the stochastic volatility component, we adopt the method in Chan (2017) to further increase the overall efficiency of our algorithm. Using the same dataset, we obtain mixed results. Some of the results have significant differences. If we use recent time period dataset, which includes the COVID‐19 pandemic period, the log market portfolio volatility seems to increase in terms of the number of clusters and size of magnitude.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.3040</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian nonparametrics ; collapsed Gibbs sampling ; COVID-19 ; Datasets ; Dirichlet problem ; Dirichlet process mixture prior ; Econometrics ; Markov chain Monte Carlo ; mixture models ; Mixtures ; Pandemics ; Sampling ; Sampling methods ; Stochastic models ; stochastic volatility ; Volatility</subject><ispartof>Journal of applied econometrics (Chichester, England), 2024-06, Vol.39 (4), p.697-704</ispartof><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3440-13079bc2d1f2abc617dc693840faaaa39dab6ab70026a161ec4d74dabc180c743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjae.3040$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjae.3040$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wu, Frank C. Z.</creatorcontrib><title>Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture</title><title>Journal of applied econometrics (Chichester, England)</title><description>Summary This paper replicates the results of the stochastic volatility–Dirichlet process mixture (SV‐DPM) models proposed in Jensen and Maheu (2010) in both a narrow and a wide sense. By using a normal‐Wishart prior and the collapsed Gibbs sampling method, our algorithm can be applied for more general settings, and it is more efficient for sampling the Dirichlet process mixture. For the stochastic volatility component, we adopt the method in Chan (2017) to further increase the overall efficiency of our algorithm. Using the same dataset, we obtain mixed results. Some of the results have significant differences. If we use recent time period dataset, which includes the COVID‐19 pandemic period, the log market portfolio volatility seems to increase in terms of the number of clusters and size of magnitude.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian nonparametrics</subject><subject>collapsed Gibbs sampling</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Dirichlet problem</subject><subject>Dirichlet process mixture prior</subject><subject>Econometrics</subject><subject>Markov chain Monte Carlo</subject><subject>mixture models</subject><subject>Mixtures</subject><subject>Pandemics</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Stochastic models</subject><subject>stochastic volatility</subject><subject>Volatility</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs4p-BECXrx0vjRt0x6nzqkMvOg5pGnqMtKmJpmz397MCZ7M5UH48X-8P0KXBGYEIL3ZCDWjkMERmhCoqoSkeX6MJlCWNGFpnp6iM-83AFAAsAlqbsWovBY9ltYYMXjV4KWua4-96Aaj-3fcWocF9sHKtfBBS_xpjQja6DDizjbK4J0O60jutdNybVTAg7NSeY87_RW2Tp2jk1YYry5-5xS9PSxe7x6T1cvy6W6-SiTNMkgIBVbVMm1Im4paFoQ1sqhomUEr4qNVI-pC1CyeWQhSECWzhmXxU5ISJMvoFF0dcuP-j63ygW_s1vVxJadQMBJvphDV9UFJZ713quWD051wIyfA9x3y2CHfdxgpPlAlba_9HyyrlOWEsDKS5EB22qjx3yj-PF_8RH4DCwV9ww</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Wu, Frank C. Z.</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>202406</creationdate><title>Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture</title><author>Wu, Frank C. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3440-13079bc2d1f2abc617dc693840faaaa39dab6ab70026a161ec4d74dabc180c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian nonparametrics</topic><topic>collapsed Gibbs sampling</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Dirichlet problem</topic><topic>Dirichlet process mixture prior</topic><topic>Econometrics</topic><topic>Markov chain Monte Carlo</topic><topic>mixture models</topic><topic>Mixtures</topic><topic>Pandemics</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Stochastic models</topic><topic>stochastic volatility</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Frank C. Z.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Frank C. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2024-06</date><risdate>2024</risdate><volume>39</volume><issue>4</issue><spage>697</spage><epage>704</epage><pages>697-704</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Summary This paper replicates the results of the stochastic volatility–Dirichlet process mixture (SV‐DPM) models proposed in Jensen and Maheu (2010) in both a narrow and a wide sense. By using a normal‐Wishart prior and the collapsed Gibbs sampling method, our algorithm can be applied for more general settings, and it is more efficient for sampling the Dirichlet process mixture. For the stochastic volatility component, we adopt the method in Chan (2017) to further increase the overall efficiency of our algorithm. Using the same dataset, we obtain mixed results. Some of the results have significant differences. If we use recent time period dataset, which includes the COVID‐19 pandemic period, the log market portfolio volatility seems to increase in terms of the number of clusters and size of magnitude.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/jae.3040</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2024-06, Vol.39 (4), p.697-704
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_3067106030
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Bayesian analysis
Bayesian nonparametrics
collapsed Gibbs sampling
COVID-19
Datasets
Dirichlet problem
Dirichlet process mixture prior
Econometrics
Markov chain Monte Carlo
mixture models
Mixtures
Pandemics
Sampling
Sampling methods
Stochastic models
stochastic volatility
Volatility
title Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20collapsed%20Gibbs%20sampling%20for%20a%20stochastic%20volatility%20model%20with%20a%20Dirichlet%20process%20mixture&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Wu,%20Frank%20C.%20Z.&rft.date=2024-06&rft.volume=39&rft.issue=4&rft.spage=697&rft.epage=704&rft.pages=697-704&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.3040&rft_dat=%3Cproquest_cross%3E3067106030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067106030&rft_id=info:pmid/&rfr_iscdi=true