Resolvent model for aeroacoustics of trailing edge noise

This study presents a physics-based, low-order model for the trailing edge (TE) noise generated by an airfoil at low angle of attack. The approach employs incompressible resolvent analysis of the mean flow to extract relevant spanwise-coherent structures in the transitional boundary layer and near w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and computational fluid dynamics 2024-04, Vol.38 (2), p.163-183
Hauptverfasser: Demange, S., Yuan, Z., Jekosch, S., Hanifi, A., Cavalieri, A. V. G., Sarradj, E., Kaiser, T. L., Oberleithner, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 163
container_title Theoretical and computational fluid dynamics
container_volume 38
creator Demange, S.
Yuan, Z.
Jekosch, S.
Hanifi, A.
Cavalieri, A. V. G.
Sarradj, E.
Kaiser, T. L.
Oberleithner, K.
description This study presents a physics-based, low-order model for the trailing edge (TE) noise generated by an airfoil at low angle of attack. The approach employs incompressible resolvent analysis of the mean flow to extract relevant spanwise-coherent structures in the transitional boundary layer and near wake. These structures are integrated into Curle’s solution to Lighthill’s acoustic analogy to obtain the scattered acoustic field. The model has the advantage of predicting surface pressure fluctuations from first principles, avoiding reliance on empirical models, but with a free amplitude set by simulation data. The model is evaluated for the transitional flow ( Re = 5 e 4 ) around a NACA0012 airfoil at 3 deg angle of attack, which features TE noise with multiple tones. The mean flow is obtained from a compressible large eddy simulation, and spectral proper orthogonal decomposition (SPOD) is employed to extract the main hydrodynamic and acoustic features of the flow. Comparisons between resolvent and SPOD demonstrate that the physics-based model accurately captures the leading coherent structures at the main tones’ frequencies, resulting in a good agreement of the reconstructed acoustic power with that of the SPOD (within 4 dB). Discrepancies are observed at high frequencies, likely linked to nonlinearities that are not considered in the resolvent analysis. The model’s directivity aligns well with the data at low Helmholtz numbers, but it fails at high frequencies where the back-scattered pressure plays a significant role in directivity. This modeling approach opens the way for efficient optimization of airfoil shapes in combination with low-fidelity mean flow solvers to reduce TE noise. Graphical abstract
doi_str_mv 10.1007/s00162-024-00688-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067102878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067102878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-13b40f761ca6fea350b5d4ced688618f220a84bbd24bcae7a2b94c8ac772e31a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMUm6lOILCoLoOmQyN2XKdFKTqWB_vaMjuHN1N9855_IRcsnhmgOYmwLAtWAgFAPQ1rLDEZlxJQUTooJjMoOFrJhaaHVKzkrZAICstJ0R-4IldR_YD3SbGuxoTJl6zMmHtC9DGwpNkQ7Zt13bryk2a6R9aguek5Pou4IXv3dO3u7vXpePbPX88LS8XbEguRoYl7WCaDQPXkf0soK6alTAZnxScxuFAG9VXTdC1cGj8aJeqGB9MEag5F7OydXUu8vpfY9lcJu0z_046SRow0FYY0dKTFTIqZSM0e1yu_X503Fw34bcZMiNhtyPIXcYQ3IKlRHu15j_qv9JfQHUzWmR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067102878</pqid></control><display><type>article</type><title>Resolvent model for aeroacoustics of trailing edge noise</title><source>Springer Nature - Complete Springer Journals</source><creator>Demange, S. ; Yuan, Z. ; Jekosch, S. ; Hanifi, A. ; Cavalieri, A. V. G. ; Sarradj, E. ; Kaiser, T. L. ; Oberleithner, K.</creator><creatorcontrib>Demange, S. ; Yuan, Z. ; Jekosch, S. ; Hanifi, A. ; Cavalieri, A. V. G. ; Sarradj, E. ; Kaiser, T. L. ; Oberleithner, K.</creatorcontrib><description>This study presents a physics-based, low-order model for the trailing edge (TE) noise generated by an airfoil at low angle of attack. The approach employs incompressible resolvent analysis of the mean flow to extract relevant spanwise-coherent structures in the transitional boundary layer and near wake. These structures are integrated into Curle’s solution to Lighthill’s acoustic analogy to obtain the scattered acoustic field. The model has the advantage of predicting surface pressure fluctuations from first principles, avoiding reliance on empirical models, but with a free amplitude set by simulation data. The model is evaluated for the transitional flow ( Re = 5 e 4 ) around a NACA0012 airfoil at 3 deg angle of attack, which features TE noise with multiple tones. The mean flow is obtained from a compressible large eddy simulation, and spectral proper orthogonal decomposition (SPOD) is employed to extract the main hydrodynamic and acoustic features of the flow. Comparisons between resolvent and SPOD demonstrate that the physics-based model accurately captures the leading coherent structures at the main tones’ frequencies, resulting in a good agreement of the reconstructed acoustic power with that of the SPOD (within 4 dB). Discrepancies are observed at high frequencies, likely linked to nonlinearities that are not considered in the resolvent analysis. The model’s directivity aligns well with the data at low Helmholtz numbers, but it fails at high frequencies where the back-scattered pressure plays a significant role in directivity. This modeling approach opens the way for efficient optimization of airfoil shapes in combination with low-fidelity mean flow solvers to reduce TE noise. Graphical abstract</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-024-00688-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Aeroacoustics ; Airfoils ; Angle of attack ; Boundary layer transition ; Boundary layers ; Classical and Continuum Physics ; Compressibility ; Computational Science and Engineering ; Directivity ; Engineering ; Engineering Fluid Dynamics ; First principles ; Fluid flow ; High frequencies ; Incompressible flow ; Large eddy simulation ; Noise ; Original Article ; Physics ; Pressure ; Proper Orthogonal Decomposition ; Sound fields ; Structures ; Trailing edges</subject><ispartof>Theoretical and computational fluid dynamics, 2024-04, Vol.38 (2), p.163-183</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-13b40f761ca6fea350b5d4ced688618f220a84bbd24bcae7a2b94c8ac772e31a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00162-024-00688-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00162-024-00688-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Demange, S.</creatorcontrib><creatorcontrib>Yuan, Z.</creatorcontrib><creatorcontrib>Jekosch, S.</creatorcontrib><creatorcontrib>Hanifi, A.</creatorcontrib><creatorcontrib>Cavalieri, A. V. G.</creatorcontrib><creatorcontrib>Sarradj, E.</creatorcontrib><creatorcontrib>Kaiser, T. L.</creatorcontrib><creatorcontrib>Oberleithner, K.</creatorcontrib><title>Resolvent model for aeroacoustics of trailing edge noise</title><title>Theoretical and computational fluid dynamics</title><addtitle>Theor. Comput. Fluid Dyn</addtitle><description>This study presents a physics-based, low-order model for the trailing edge (TE) noise generated by an airfoil at low angle of attack. The approach employs incompressible resolvent analysis of the mean flow to extract relevant spanwise-coherent structures in the transitional boundary layer and near wake. These structures are integrated into Curle’s solution to Lighthill’s acoustic analogy to obtain the scattered acoustic field. The model has the advantage of predicting surface pressure fluctuations from first principles, avoiding reliance on empirical models, but with a free amplitude set by simulation data. The model is evaluated for the transitional flow ( Re = 5 e 4 ) around a NACA0012 airfoil at 3 deg angle of attack, which features TE noise with multiple tones. The mean flow is obtained from a compressible large eddy simulation, and spectral proper orthogonal decomposition (SPOD) is employed to extract the main hydrodynamic and acoustic features of the flow. Comparisons between resolvent and SPOD demonstrate that the physics-based model accurately captures the leading coherent structures at the main tones’ frequencies, resulting in a good agreement of the reconstructed acoustic power with that of the SPOD (within 4 dB). Discrepancies are observed at high frequencies, likely linked to nonlinearities that are not considered in the resolvent analysis. The model’s directivity aligns well with the data at low Helmholtz numbers, but it fails at high frequencies where the back-scattered pressure plays a significant role in directivity. This modeling approach opens the way for efficient optimization of airfoil shapes in combination with low-fidelity mean flow solvers to reduce TE noise. Graphical abstract</description><subject>Acoustics</subject><subject>Aeroacoustics</subject><subject>Airfoils</subject><subject>Angle of attack</subject><subject>Boundary layer transition</subject><subject>Boundary layers</subject><subject>Classical and Continuum Physics</subject><subject>Compressibility</subject><subject>Computational Science and Engineering</subject><subject>Directivity</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>First principles</subject><subject>Fluid flow</subject><subject>High frequencies</subject><subject>Incompressible flow</subject><subject>Large eddy simulation</subject><subject>Noise</subject><subject>Original Article</subject><subject>Physics</subject><subject>Pressure</subject><subject>Proper Orthogonal Decomposition</subject><subject>Sound fields</subject><subject>Structures</subject><subject>Trailing edges</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMUm6lOILCoLoOmQyN2XKdFKTqWB_vaMjuHN1N9855_IRcsnhmgOYmwLAtWAgFAPQ1rLDEZlxJQUTooJjMoOFrJhaaHVKzkrZAICstJ0R-4IldR_YD3SbGuxoTJl6zMmHtC9DGwpNkQ7Zt13bryk2a6R9aguek5Pou4IXv3dO3u7vXpePbPX88LS8XbEguRoYl7WCaDQPXkf0soK6alTAZnxScxuFAG9VXTdC1cGj8aJeqGB9MEag5F7OydXUu8vpfY9lcJu0z_046SRow0FYY0dKTFTIqZSM0e1yu_X503Fw34bcZMiNhtyPIXcYQ3IKlRHu15j_qv9JfQHUzWmR</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Demange, S.</creator><creator>Yuan, Z.</creator><creator>Jekosch, S.</creator><creator>Hanifi, A.</creator><creator>Cavalieri, A. V. G.</creator><creator>Sarradj, E.</creator><creator>Kaiser, T. L.</creator><creator>Oberleithner, K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>U9A</scope></search><sort><creationdate>20240401</creationdate><title>Resolvent model for aeroacoustics of trailing edge noise</title><author>Demange, S. ; Yuan, Z. ; Jekosch, S. ; Hanifi, A. ; Cavalieri, A. V. G. ; Sarradj, E. ; Kaiser, T. L. ; Oberleithner, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-13b40f761ca6fea350b5d4ced688618f220a84bbd24bcae7a2b94c8ac772e31a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Aeroacoustics</topic><topic>Airfoils</topic><topic>Angle of attack</topic><topic>Boundary layer transition</topic><topic>Boundary layers</topic><topic>Classical and Continuum Physics</topic><topic>Compressibility</topic><topic>Computational Science and Engineering</topic><topic>Directivity</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>First principles</topic><topic>Fluid flow</topic><topic>High frequencies</topic><topic>Incompressible flow</topic><topic>Large eddy simulation</topic><topic>Noise</topic><topic>Original Article</topic><topic>Physics</topic><topic>Pressure</topic><topic>Proper Orthogonal Decomposition</topic><topic>Sound fields</topic><topic>Structures</topic><topic>Trailing edges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demange, S.</creatorcontrib><creatorcontrib>Yuan, Z.</creatorcontrib><creatorcontrib>Jekosch, S.</creatorcontrib><creatorcontrib>Hanifi, A.</creatorcontrib><creatorcontrib>Cavalieri, A. V. G.</creatorcontrib><creatorcontrib>Sarradj, E.</creatorcontrib><creatorcontrib>Kaiser, T. L.</creatorcontrib><creatorcontrib>Oberleithner, K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demange, S.</au><au>Yuan, Z.</au><au>Jekosch, S.</au><au>Hanifi, A.</au><au>Cavalieri, A. V. G.</au><au>Sarradj, E.</au><au>Kaiser, T. L.</au><au>Oberleithner, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolvent model for aeroacoustics of trailing edge noise</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><stitle>Theor. Comput. Fluid Dyn</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>38</volume><issue>2</issue><spage>163</spage><epage>183</epage><pages>163-183</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>This study presents a physics-based, low-order model for the trailing edge (TE) noise generated by an airfoil at low angle of attack. The approach employs incompressible resolvent analysis of the mean flow to extract relevant spanwise-coherent structures in the transitional boundary layer and near wake. These structures are integrated into Curle’s solution to Lighthill’s acoustic analogy to obtain the scattered acoustic field. The model has the advantage of predicting surface pressure fluctuations from first principles, avoiding reliance on empirical models, but with a free amplitude set by simulation data. The model is evaluated for the transitional flow ( Re = 5 e 4 ) around a NACA0012 airfoil at 3 deg angle of attack, which features TE noise with multiple tones. The mean flow is obtained from a compressible large eddy simulation, and spectral proper orthogonal decomposition (SPOD) is employed to extract the main hydrodynamic and acoustic features of the flow. Comparisons between resolvent and SPOD demonstrate that the physics-based model accurately captures the leading coherent structures at the main tones’ frequencies, resulting in a good agreement of the reconstructed acoustic power with that of the SPOD (within 4 dB). Discrepancies are observed at high frequencies, likely linked to nonlinearities that are not considered in the resolvent analysis. The model’s directivity aligns well with the data at low Helmholtz numbers, but it fails at high frequencies where the back-scattered pressure plays a significant role in directivity. This modeling approach opens the way for efficient optimization of airfoil shapes in combination with low-fidelity mean flow solvers to reduce TE noise. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00162-024-00688-z</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-4964
ispartof Theoretical and computational fluid dynamics, 2024-04, Vol.38 (2), p.163-183
issn 0935-4964
1432-2250
language eng
recordid cdi_proquest_journals_3067102878
source Springer Nature - Complete Springer Journals
subjects Acoustics
Aeroacoustics
Airfoils
Angle of attack
Boundary layer transition
Boundary layers
Classical and Continuum Physics
Compressibility
Computational Science and Engineering
Directivity
Engineering
Engineering Fluid Dynamics
First principles
Fluid flow
High frequencies
Incompressible flow
Large eddy simulation
Noise
Original Article
Physics
Pressure
Proper Orthogonal Decomposition
Sound fields
Structures
Trailing edges
title Resolvent model for aeroacoustics of trailing edge noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolvent%20model%20for%20aeroacoustics%20of%20trailing%20edge%20noise&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Demange,%20S.&rft.date=2024-04-01&rft.volume=38&rft.issue=2&rft.spage=163&rft.epage=183&rft.pages=163-183&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-024-00688-z&rft_dat=%3Cproquest_cross%3E3067102878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067102878&rft_id=info:pmid/&rfr_iscdi=true