Predicting daily hotel occupancy: a practical application for independent hotels

Accurately forecasting daily hotel occupancy is critical for revenue managers. Limited research focuses on predicting daily hotel occupancy by implementing traditional forecasting techniques, which only require a little statistical knowledge or expensive software for small independent properties. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of revenue and pricing management 2024-06, Vol.23 (3), p.197-205
Hauptverfasser: Ampountolas, Apostolos, Legg, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 3
container_start_page 197
container_title Journal of revenue and pricing management
container_volume 23
creator Ampountolas, Apostolos
Legg, Mark
description Accurately forecasting daily hotel occupancy is critical for revenue managers. Limited research focuses on predicting daily hotel occupancy by implementing traditional forecasting techniques, which only require a little statistical knowledge or expensive software for small independent properties. This study employs longitudinal daily occupancy data from multiple properties in urban settings within the United States to test four forecasting models for short-term (1–90 day) predictions. The results showed that Simple Exponential Smoothing (SES) was most accurate for four horizons, while Extreme Gradient Boosting (XGBoost) was better for shorter-term predictions in the other seven. In conclusion, these results demonstrate that small independent properties may successfully implement traditional forecasting methods for accurate daily occupancy forecasting.
doi_str_mv 10.1057/s41272-023-00445-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067062430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067062430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f5fe155bebcd5f79f39913004289e6114525ccfc678f19fe25dbb88d1c69fbe3</originalsourceid><addsrcrecordid>eNp9kD1LBDEQhoMoeJ7-AauAdTTf2diJ-AUHXnGFXchmk3OPNVmTveL-vdEV7GxmBvI8M-EF4JLga4KFuimcUEURpgxhzLlA6ggsCFcKSaHejn9miaRm-BSclbLDmFLJ1QKs19l3vZv6uIWd7YcDfE-TH2Bybj_a6A630MIx20o4O0A7jkMdpj5FGFKGfez86GuJ0yyWc3AS7FD8xW9fgs3jw-b-Ga1en17u71bIMSUnFETwRIjWt64TQenAtCas_p022ktCuKDCueCkagLRwVPRtW3TdMRJHVrPluBqXjvm9Ln3ZTK7tM-xXjQMS4Ul5QxXis6Uy6mU7IMZc_9h88EQbL6DM3NwpgZnfoIzqkpwlrxLsS9_SqMlF1UiFWEzUupj3Pr8d_2fxV_7gXwS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067062430</pqid></control><display><type>article</type><title>Predicting daily hotel occupancy: a practical application for independent hotels</title><source>SpringerLink Journals (MCLS)</source><creator>Ampountolas, Apostolos ; Legg, Mark</creator><creatorcontrib>Ampountolas, Apostolos ; Legg, Mark</creatorcontrib><description>Accurately forecasting daily hotel occupancy is critical for revenue managers. Limited research focuses on predicting daily hotel occupancy by implementing traditional forecasting techniques, which only require a little statistical knowledge or expensive software for small independent properties. This study employs longitudinal daily occupancy data from multiple properties in urban settings within the United States to test four forecasting models for short-term (1–90 day) predictions. The results showed that Simple Exponential Smoothing (SES) was most accurate for four horizons, while Extreme Gradient Boosting (XGBoost) was better for shorter-term predictions in the other seven. In conclusion, these results demonstrate that small independent properties may successfully implement traditional forecasting methods for accurate daily occupancy forecasting.</description><identifier>ISSN: 1476-6930</identifier><identifier>EISSN: 1477-657X</identifier><identifier>DOI: 10.1057/s41272-023-00445-7</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>Accuracy ; Business and Management ; Forecasting ; Forecasting techniques ; Hospitality industry ; Hotels &amp; motels ; Machine learning ; Regression analysis ; Research Article ; Revenue management ; Time series ; Trends</subject><ispartof>Journal of revenue and pricing management, 2024-06, Vol.23 (3), p.197-205</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f5fe155bebcd5f79f39913004289e6114525ccfc678f19fe25dbb88d1c69fbe3</citedby><cites>FETCH-LOGICAL-c376t-f5fe155bebcd5f79f39913004289e6114525ccfc678f19fe25dbb88d1c69fbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1057/s41272-023-00445-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1057/s41272-023-00445-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ampountolas, Apostolos</creatorcontrib><creatorcontrib>Legg, Mark</creatorcontrib><title>Predicting daily hotel occupancy: a practical application for independent hotels</title><title>Journal of revenue and pricing management</title><addtitle>J Revenue Pricing Manag</addtitle><description>Accurately forecasting daily hotel occupancy is critical for revenue managers. Limited research focuses on predicting daily hotel occupancy by implementing traditional forecasting techniques, which only require a little statistical knowledge or expensive software for small independent properties. This study employs longitudinal daily occupancy data from multiple properties in urban settings within the United States to test four forecasting models for short-term (1–90 day) predictions. The results showed that Simple Exponential Smoothing (SES) was most accurate for four horizons, while Extreme Gradient Boosting (XGBoost) was better for shorter-term predictions in the other seven. In conclusion, these results demonstrate that small independent properties may successfully implement traditional forecasting methods for accurate daily occupancy forecasting.</description><subject>Accuracy</subject><subject>Business and Management</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Hospitality industry</subject><subject>Hotels &amp; motels</subject><subject>Machine learning</subject><subject>Regression analysis</subject><subject>Research Article</subject><subject>Revenue management</subject><subject>Time series</subject><subject>Trends</subject><issn>1476-6930</issn><issn>1477-657X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1LBDEQhoMoeJ7-AauAdTTf2diJ-AUHXnGFXchmk3OPNVmTveL-vdEV7GxmBvI8M-EF4JLga4KFuimcUEURpgxhzLlA6ggsCFcKSaHejn9miaRm-BSclbLDmFLJ1QKs19l3vZv6uIWd7YcDfE-TH2Bybj_a6A630MIx20o4O0A7jkMdpj5FGFKGfez86GuJ0yyWc3AS7FD8xW9fgs3jw-b-Ga1en17u71bIMSUnFETwRIjWt64TQenAtCas_p022ktCuKDCueCkagLRwVPRtW3TdMRJHVrPluBqXjvm9Ln3ZTK7tM-xXjQMS4Ul5QxXis6Uy6mU7IMZc_9h88EQbL6DM3NwpgZnfoIzqkpwlrxLsS9_SqMlF1UiFWEzUupj3Pr8d_2fxV_7gXwS</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ampountolas, Apostolos</creator><creator>Legg, Mark</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Predicting daily hotel occupancy: a practical application for independent hotels</title><author>Ampountolas, Apostolos ; Legg, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f5fe155bebcd5f79f39913004289e6114525ccfc678f19fe25dbb88d1c69fbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Business and Management</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Hospitality industry</topic><topic>Hotels &amp; motels</topic><topic>Machine learning</topic><topic>Regression analysis</topic><topic>Research Article</topic><topic>Revenue management</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ampountolas, Apostolos</creatorcontrib><creatorcontrib>Legg, Mark</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of revenue and pricing management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ampountolas, Apostolos</au><au>Legg, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting daily hotel occupancy: a practical application for independent hotels</atitle><jtitle>Journal of revenue and pricing management</jtitle><stitle>J Revenue Pricing Manag</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>23</volume><issue>3</issue><spage>197</spage><epage>205</epage><pages>197-205</pages><issn>1476-6930</issn><eissn>1477-657X</eissn><abstract>Accurately forecasting daily hotel occupancy is critical for revenue managers. Limited research focuses on predicting daily hotel occupancy by implementing traditional forecasting techniques, which only require a little statistical knowledge or expensive software for small independent properties. This study employs longitudinal daily occupancy data from multiple properties in urban settings within the United States to test four forecasting models for short-term (1–90 day) predictions. The results showed that Simple Exponential Smoothing (SES) was most accurate for four horizons, while Extreme Gradient Boosting (XGBoost) was better for shorter-term predictions in the other seven. In conclusion, these results demonstrate that small independent properties may successfully implement traditional forecasting methods for accurate daily occupancy forecasting.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/s41272-023-00445-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-6930
ispartof Journal of revenue and pricing management, 2024-06, Vol.23 (3), p.197-205
issn 1476-6930
1477-657X
language eng
recordid cdi_proquest_journals_3067062430
source SpringerLink Journals (MCLS)
subjects Accuracy
Business and Management
Forecasting
Forecasting techniques
Hospitality industry
Hotels & motels
Machine learning
Regression analysis
Research Article
Revenue management
Time series
Trends
title Predicting daily hotel occupancy: a practical application for independent hotels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20daily%20hotel%20occupancy:%20a%20practical%20application%20for%20independent%20hotels&rft.jtitle=Journal%20of%20revenue%20and%20pricing%20management&rft.au=Ampountolas,%20Apostolos&rft.date=2024-06-01&rft.volume=23&rft.issue=3&rft.spage=197&rft.epage=205&rft.pages=197-205&rft.issn=1476-6930&rft.eissn=1477-657X&rft_id=info:doi/10.1057/s41272-023-00445-7&rft_dat=%3Cproquest_cross%3E3067062430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067062430&rft_id=info:pmid/&rfr_iscdi=true