PatentEval: Understanding Errors in Patent Generation

In this work, we introduce a comprehensive error typology specifically designed for evaluating two distinct tasks in machine-generated patent texts: claims-to-abstract generation, and the generation of the next claim given previous ones. We have also developed a benchmark, PatentEval, for systematic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Zuo, You, Gerdes, Kim, Eric Villemonte de La Clergerie, Sagot, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zuo, You
Gerdes, Kim
Eric Villemonte de La Clergerie
Sagot, Benoît
description In this work, we introduce a comprehensive error typology specifically designed for evaluating two distinct tasks in machine-generated patent texts: claims-to-abstract generation, and the generation of the next claim given previous ones. We have also developed a benchmark, PatentEval, for systematically assessing language models in this context. Our study includes a comparative analysis, annotated by humans, of various models. These range from those specifically adapted during training for tasks within the patent domain to the latest general-purpose large language models (LLMs). Furthermore, we explored and evaluated some metrics to approximate human judgments in patent text evaluation, analyzing the extent to which these metrics align with expert assessments. These approaches provide valuable insights into the capabilities and limitations of current language models in the specialized field of patent text generation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067025228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067025228</sourcerecordid><originalsourceid>FETCH-proquest_journals_30670252283</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC_Fi2uIqUUcHnUugp6SUi96lPr-CPoDTP_zfTBVg7aZqtwALVYoMxhioG3DOFsqdQ0bK_hXGnb5Sjyw5UB_prj1zYtGR9NfoIxJyyDHRSs1vYRQsf12q9cFf9qfqwek5oeRuSBPTZ3XW1I0BB9Da_9QbkXc08A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067025228</pqid></control><display><type>article</type><title>PatentEval: Understanding Errors in Patent Generation</title><source>Free E- Journals</source><creator>Zuo, You ; Gerdes, Kim ; Eric Villemonte de La Clergerie ; Sagot, Benoît</creator><creatorcontrib>Zuo, You ; Gerdes, Kim ; Eric Villemonte de La Clergerie ; Sagot, Benoît</creatorcontrib><description>In this work, we introduce a comprehensive error typology specifically designed for evaluating two distinct tasks in machine-generated patent texts: claims-to-abstract generation, and the generation of the next claim given previous ones. We have also developed a benchmark, PatentEval, for systematically assessing language models in this context. Our study includes a comparative analysis, annotated by humans, of various models. These range from those specifically adapted during training for tasks within the patent domain to the latest general-purpose large language models (LLMs). Furthermore, we explored and evaluated some metrics to approximate human judgments in patent text evaluation, analyzing the extent to which these metrics align with expert assessments. These approaches provide valuable insights into the capabilities and limitations of current language models in the specialized field of patent text generation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Large language models</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zuo, You</creatorcontrib><creatorcontrib>Gerdes, Kim</creatorcontrib><creatorcontrib>Eric Villemonte de La Clergerie</creatorcontrib><creatorcontrib>Sagot, Benoît</creatorcontrib><title>PatentEval: Understanding Errors in Patent Generation</title><title>arXiv.org</title><description>In this work, we introduce a comprehensive error typology specifically designed for evaluating two distinct tasks in machine-generated patent texts: claims-to-abstract generation, and the generation of the next claim given previous ones. We have also developed a benchmark, PatentEval, for systematically assessing language models in this context. Our study includes a comparative analysis, annotated by humans, of various models. These range from those specifically adapted during training for tasks within the patent domain to the latest general-purpose large language models (LLMs). Furthermore, we explored and evaluated some metrics to approximate human judgments in patent text evaluation, analyzing the extent to which these metrics align with expert assessments. These approaches provide valuable insights into the capabilities and limitations of current language models in the specialized field of patent text generation.</description><subject>Large language models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC_Fi2uIqUUcHnUugp6SUi96lPr-CPoDTP_zfTBVg7aZqtwALVYoMxhioG3DOFsqdQ0bK_hXGnb5Sjyw5UB_prj1zYtGR9NfoIxJyyDHRSs1vYRQsf12q9cFf9qfqwek5oeRuSBPTZ3XW1I0BB9Da_9QbkXc08A</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>Zuo, You</creator><creator>Gerdes, Kim</creator><creator>Eric Villemonte de La Clergerie</creator><creator>Sagot, Benoît</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240625</creationdate><title>PatentEval: Understanding Errors in Patent Generation</title><author>Zuo, You ; Gerdes, Kim ; Eric Villemonte de La Clergerie ; Sagot, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30670252283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Large language models</topic><toplevel>online_resources</toplevel><creatorcontrib>Zuo, You</creatorcontrib><creatorcontrib>Gerdes, Kim</creatorcontrib><creatorcontrib>Eric Villemonte de La Clergerie</creatorcontrib><creatorcontrib>Sagot, Benoît</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, You</au><au>Gerdes, Kim</au><au>Eric Villemonte de La Clergerie</au><au>Sagot, Benoît</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PatentEval: Understanding Errors in Patent Generation</atitle><jtitle>arXiv.org</jtitle><date>2024-06-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work, we introduce a comprehensive error typology specifically designed for evaluating two distinct tasks in machine-generated patent texts: claims-to-abstract generation, and the generation of the next claim given previous ones. We have also developed a benchmark, PatentEval, for systematically assessing language models in this context. Our study includes a comparative analysis, annotated by humans, of various models. These range from those specifically adapted during training for tasks within the patent domain to the latest general-purpose large language models (LLMs). Furthermore, we explored and evaluated some metrics to approximate human judgments in patent text evaluation, analyzing the extent to which these metrics align with expert assessments. These approaches provide valuable insights into the capabilities and limitations of current language models in the specialized field of patent text generation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3067025228
source Free E- Journals
subjects Large language models
title PatentEval: Understanding Errors in Patent Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PatentEval:%20Understanding%20Errors%20in%20Patent%20Generation&rft.jtitle=arXiv.org&rft.au=Zuo,%20You&rft.date=2024-06-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067025228%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067025228&rft_id=info:pmid/&rfr_iscdi=true