Multi-Scale Attention Based Channel Estimation for RIS-Aided Massive MIMO Systems

A multi-scale attention based channel estimation framework is proposed for reconfigurable intelligent surface (RIS) aided massive multiple-input multiple-output systems, in which hardware imperfections and time-varying characteristics of the cascaded channel are investigated. By exploiting the spati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-06, Vol.23 (6), p.5969-5984
Hauptverfasser: Xiao, Jian, Wang, Ji, Wang, Zhaolin, Xie, Wenwu, Liu, Yuanwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5984
container_issue 6
container_start_page 5969
container_title IEEE transactions on wireless communications
container_volume 23
creator Xiao, Jian
Wang, Ji
Wang, Zhaolin
Xie, Wenwu
Liu, Yuanwei
description A multi-scale attention based channel estimation framework is proposed for reconfigurable intelligent surface (RIS) aided massive multiple-input multiple-output systems, in which hardware imperfections and time-varying characteristics of the cascaded channel are investigated. By exploiting the spatial correlations of different scales in the RIS reflection element domain, we construct a Laplacian pyramid attention network (LPAN) to realize the high-dimensional cascaded channel reconstruction with limited pilot overhead. In LPAN, we leverage the multi-scale supervision learning to progressively capture the spatial correlations of the cascaded channel, where the attention mechanism based dual-branch architecture is designed. To balance network performance and complexity of LPAN, we further propose a lightweight LPAN-L architecture. In LPAN-L, the partial standard convolutional layers are decomposed into the group convolution, dilated convolution and point-wise convolution, which forms a sparse convolutional filter set to extract the channel feature with less computation cost. Furthermore, we leverage parameter sharing and recursion strategy to reduce the space complexity. Moreover, a selective fine-tuning strategy is developed to realize the domain adaption. Simulation results show that the proposed LPAN can achieve higher estimation accuracy than the existing estimation schemes, while the LPAN-L architecture with a close performance to LPAN efficiently reduces the network complexity. The code is available at https://github.com/Holographic-Lab/LPAN .
doi_str_mv 10.1109/TWC.2023.3329387
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3066939018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10313112</ieee_id><sourcerecordid>3066939018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ca7cbf81563648a4e27493739738e375a0d2d4e5f94f3291c00d38f338ecbe3e3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqWwMzBEYk6xfXHsjCVqoVKjClrEaLnJRaRKk2K7SP33uLQD0530vnen9wi5Z3TEGM2eVp_5iFMOIwCegZIXZMCEUDHnibo87pDGjMv0mtw4t6GUyVSIAXkr9q1v4mVpWozG3mPnm76Lno3DKsq_TNdhG02cb7bmT6h7G73PlvG4qQJQGOeaH4yKWbGIlgfncetuyVVtWod35zkkH9PJKn-N54uXWT6exyVPhI9LI8t1rZhIIU2USZDLJAMJmQSFIIWhFa8SFHWW1CERKymtQNUQ1HKNgDAkj6e7O9t_79F5ven3tgsvNdA0zSCjTAWKnqjS9s5ZrPXOhiz2oBnVx-J0KE4fi9Pn4oLl4WRpEPEfDgwY4_ALwCBn0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066939018</pqid></control><display><type>article</type><title>Multi-Scale Attention Based Channel Estimation for RIS-Aided Massive MIMO Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Jian ; Wang, Ji ; Wang, Zhaolin ; Xie, Wenwu ; Liu, Yuanwei</creator><creatorcontrib>Xiao, Jian ; Wang, Ji ; Wang, Zhaolin ; Xie, Wenwu ; Liu, Yuanwei</creatorcontrib><description>A multi-scale attention based channel estimation framework is proposed for reconfigurable intelligent surface (RIS) aided massive multiple-input multiple-output systems, in which hardware imperfections and time-varying characteristics of the cascaded channel are investigated. By exploiting the spatial correlations of different scales in the RIS reflection element domain, we construct a Laplacian pyramid attention network (LPAN) to realize the high-dimensional cascaded channel reconstruction with limited pilot overhead. In LPAN, we leverage the multi-scale supervision learning to progressively capture the spatial correlations of the cascaded channel, where the attention mechanism based dual-branch architecture is designed. To balance network performance and complexity of LPAN, we further propose a lightweight LPAN-L architecture. In LPAN-L, the partial standard convolutional layers are decomposed into the group convolution, dilated convolution and point-wise convolution, which forms a sparse convolutional filter set to extract the channel feature with less computation cost. Furthermore, we leverage parameter sharing and recursion strategy to reduce the space complexity. Moreover, a selective fine-tuning strategy is developed to realize the domain adaption. Simulation results show that the proposed LPAN can achieve higher estimation accuracy than the existing estimation schemes, while the LPAN-L architecture with a close performance to LPAN efficiently reduces the network complexity. The code is available at https://github.com/Holographic-Lab/LPAN .</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3329387</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel estimation ; Complexity ; Convolution ; Correlation ; Domains ; Estimation ; Hardware ; hardware impairments ; Millimeter wave communication ; multi-scale attention ; Reconfigurable intelligent surface ; Reconfigurable intelligent surfaces ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2024-06, Vol.23 (6), p.5969-5984</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ca7cbf81563648a4e27493739738e375a0d2d4e5f94f3291c00d38f338ecbe3e3</cites><orcidid>0000-0002-4536-6044 ; 0000-0003-4614-0175 ; 0000-0002-2902-6023 ; 0000-0003-4778-2436 ; 0000-0002-6389-8941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10313112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10313112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Jian</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Wang, Zhaolin</creatorcontrib><creatorcontrib>Xie, Wenwu</creatorcontrib><creatorcontrib>Liu, Yuanwei</creatorcontrib><title>Multi-Scale Attention Based Channel Estimation for RIS-Aided Massive MIMO Systems</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>A multi-scale attention based channel estimation framework is proposed for reconfigurable intelligent surface (RIS) aided massive multiple-input multiple-output systems, in which hardware imperfections and time-varying characteristics of the cascaded channel are investigated. By exploiting the spatial correlations of different scales in the RIS reflection element domain, we construct a Laplacian pyramid attention network (LPAN) to realize the high-dimensional cascaded channel reconstruction with limited pilot overhead. In LPAN, we leverage the multi-scale supervision learning to progressively capture the spatial correlations of the cascaded channel, where the attention mechanism based dual-branch architecture is designed. To balance network performance and complexity of LPAN, we further propose a lightweight LPAN-L architecture. In LPAN-L, the partial standard convolutional layers are decomposed into the group convolution, dilated convolution and point-wise convolution, which forms a sparse convolutional filter set to extract the channel feature with less computation cost. Furthermore, we leverage parameter sharing and recursion strategy to reduce the space complexity. Moreover, a selective fine-tuning strategy is developed to realize the domain adaption. Simulation results show that the proposed LPAN can achieve higher estimation accuracy than the existing estimation schemes, while the LPAN-L architecture with a close performance to LPAN efficiently reduces the network complexity. The code is available at https://github.com/Holographic-Lab/LPAN .</description><subject>Channel estimation</subject><subject>Complexity</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Domains</subject><subject>Estimation</subject><subject>Hardware</subject><subject>hardware impairments</subject><subject>Millimeter wave communication</subject><subject>multi-scale attention</subject><subject>Reconfigurable intelligent surface</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqWwMzBEYk6xfXHsjCVqoVKjClrEaLnJRaRKk2K7SP33uLQD0530vnen9wi5Z3TEGM2eVp_5iFMOIwCegZIXZMCEUDHnibo87pDGjMv0mtw4t6GUyVSIAXkr9q1v4mVpWozG3mPnm76Lno3DKsq_TNdhG02cb7bmT6h7G73PlvG4qQJQGOeaH4yKWbGIlgfncetuyVVtWod35zkkH9PJKn-N54uXWT6exyVPhI9LI8t1rZhIIU2USZDLJAMJmQSFIIWhFa8SFHWW1CERKymtQNUQ1HKNgDAkj6e7O9t_79F5ven3tgsvNdA0zSCjTAWKnqjS9s5ZrPXOhiz2oBnVx-J0KE4fi9Pn4oLl4WRpEPEfDgwY4_ALwCBn0A</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Xiao, Jian</creator><creator>Wang, Ji</creator><creator>Wang, Zhaolin</creator><creator>Xie, Wenwu</creator><creator>Liu, Yuanwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4536-6044</orcidid><orcidid>https://orcid.org/0000-0003-4614-0175</orcidid><orcidid>https://orcid.org/0000-0002-2902-6023</orcidid><orcidid>https://orcid.org/0000-0003-4778-2436</orcidid><orcidid>https://orcid.org/0000-0002-6389-8941</orcidid></search><sort><creationdate>20240601</creationdate><title>Multi-Scale Attention Based Channel Estimation for RIS-Aided Massive MIMO Systems</title><author>Xiao, Jian ; Wang, Ji ; Wang, Zhaolin ; Xie, Wenwu ; Liu, Yuanwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ca7cbf81563648a4e27493739738e375a0d2d4e5f94f3291c00d38f338ecbe3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel estimation</topic><topic>Complexity</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Domains</topic><topic>Estimation</topic><topic>Hardware</topic><topic>hardware impairments</topic><topic>Millimeter wave communication</topic><topic>multi-scale attention</topic><topic>Reconfigurable intelligent surface</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jian</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Wang, Zhaolin</creatorcontrib><creatorcontrib>Xie, Wenwu</creatorcontrib><creatorcontrib>Liu, Yuanwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Jian</au><au>Wang, Ji</au><au>Wang, Zhaolin</au><au>Xie, Wenwu</au><au>Liu, Yuanwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Scale Attention Based Channel Estimation for RIS-Aided Massive MIMO Systems</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>5969</spage><epage>5984</epage><pages>5969-5984</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>A multi-scale attention based channel estimation framework is proposed for reconfigurable intelligent surface (RIS) aided massive multiple-input multiple-output systems, in which hardware imperfections and time-varying characteristics of the cascaded channel are investigated. By exploiting the spatial correlations of different scales in the RIS reflection element domain, we construct a Laplacian pyramid attention network (LPAN) to realize the high-dimensional cascaded channel reconstruction with limited pilot overhead. In LPAN, we leverage the multi-scale supervision learning to progressively capture the spatial correlations of the cascaded channel, where the attention mechanism based dual-branch architecture is designed. To balance network performance and complexity of LPAN, we further propose a lightweight LPAN-L architecture. In LPAN-L, the partial standard convolutional layers are decomposed into the group convolution, dilated convolution and point-wise convolution, which forms a sparse convolutional filter set to extract the channel feature with less computation cost. Furthermore, we leverage parameter sharing and recursion strategy to reduce the space complexity. Moreover, a selective fine-tuning strategy is developed to realize the domain adaption. Simulation results show that the proposed LPAN can achieve higher estimation accuracy than the existing estimation schemes, while the LPAN-L architecture with a close performance to LPAN efficiently reduces the network complexity. The code is available at https://github.com/Holographic-Lab/LPAN .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3329387</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4536-6044</orcidid><orcidid>https://orcid.org/0000-0003-4614-0175</orcidid><orcidid>https://orcid.org/0000-0002-2902-6023</orcidid><orcidid>https://orcid.org/0000-0003-4778-2436</orcidid><orcidid>https://orcid.org/0000-0002-6389-8941</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-06, Vol.23 (6), p.5969-5984
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_3066939018
source IEEE Electronic Library (IEL)
subjects Channel estimation
Complexity
Convolution
Correlation
Domains
Estimation
Hardware
hardware impairments
Millimeter wave communication
multi-scale attention
Reconfigurable intelligent surface
Reconfigurable intelligent surfaces
Wireless communication
title Multi-Scale Attention Based Channel Estimation for RIS-Aided Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Scale%20Attention%20Based%20Channel%20Estimation%20for%20RIS-Aided%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Xiao,%20Jian&rft.date=2024-06-01&rft.volume=23&rft.issue=6&rft.spage=5969&rft.epage=5984&rft.pages=5969-5984&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3329387&rft_dat=%3Cproquest_RIE%3E3066939018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066939018&rft_id=info:pmid/&rft_ieee_id=10313112&rfr_iscdi=true