An Advanced Hexacopter for Mars Exploration: Attitude Control and Autonomous Navigation
Mars exploration has recently witnessed major interest within the scientific community, particularly because unmanned aerial robotic platforms offer reliable alternatives for acquiring and collecting data and information from the Red Planet. However, the specific conditions of the Martian environmen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2024-06, Vol.60 (3), p.3569-3581 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3581 |
---|---|
container_issue | 3 |
container_start_page | 3569 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 60 |
creator | Sopegno, Laura Martini, Simone Pedone, Salvatore Fagiolini, Adriano Rutherford, Matthew J. Stefanovic, Margareta Rizzo, Alessandro Livreri, Patrizia Valavanis, Kimon P. |
description | Mars exploration has recently witnessed major interest within the scientific community, particularly because unmanned aerial robotic platforms offer reliable alternatives for acquiring and collecting data and information from the Red Planet. However, the specific conditions of the Martian environment result in a restricted flight envelope when flying close to Mars and then landing on the surface of Mars. Therefore, in addition to the requirement to develop an aerial platform suitable for operations on Mars, autonomous navigation strategies and robust controllers are also needed for exploration tasks. It is argued that hexacopters with their relatively compact design represent a promising solution for autonomous exploration tasks on Mars, overcoming at the same time the limitations of wheel-based rovers. This research focuses on the design of a Mars hexacopter for a scouting mission in the Jezero region of Mars. The configuration and architecture of the hexacopter follow NASA conceptual study of the Mars science helicopter. Then, the mission profile for mapping the Belva crater is examined, followed by a detailed approach to implement and test observer-based navigation and control strategies. A comprehensive simulated experiments environment based on the integration of robot operating system and Ardupilot is also presented, used to validate the overall system architecture and mission parameters considering both the morphological shape of the explored crater and the atmospheric conditions of Mars. |
doi_str_mv | 10.1109/TAES.2024.3365667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066938942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10433767</ieee_id><sourcerecordid>3066938942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ce1708e822ea400a9e16860eefa013eda7e46756eaf271fbdbd6c9fe325fcf503</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1X5tNvC2lWqHqwYrHkO5OZEu7WZNsqf_erfXgaXiZ552BB6FrSiaUEn23LGdvE0aYmHAucymLEzSieV5kWhJ-ikaEUJVpltNzdBHjeohCCT5CH2WLy3pn2wpqPIe9rXyXIGDnA362IeLZvtv4YFPj23tcptSkvgY89W0KfoNtW-OyT771W99H_GJ3zecve4nOnN1EuPqbY_T-MFtO59ni9fFpWi6yiimdsgpoQRQoxsAKQqwGKpUkAM4SyqG2BQhZ5BKsYwV1q3pVy0o74Cx3lcsJH6Pb490u-K8eYjJr34d2eGk4kVJzpQUbKHqkquBjDOBMF5qtDd-GEnPwZw7-zMGf-fM3dG6OnQYA_vGC82JY_wBmGG0n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066938942</pqid></control><display><type>article</type><title>An Advanced Hexacopter for Mars Exploration: Attitude Control and Autonomous Navigation</title><source>IEEE Electronic Library (IEL)</source><creator>Sopegno, Laura ; Martini, Simone ; Pedone, Salvatore ; Fagiolini, Adriano ; Rutherford, Matthew J. ; Stefanovic, Margareta ; Rizzo, Alessandro ; Livreri, Patrizia ; Valavanis, Kimon P.</creator><creatorcontrib>Sopegno, Laura ; Martini, Simone ; Pedone, Salvatore ; Fagiolini, Adriano ; Rutherford, Matthew J. ; Stefanovic, Margareta ; Rizzo, Alessandro ; Livreri, Patrizia ; Valavanis, Kimon P.</creatorcontrib><description>Mars exploration has recently witnessed major interest within the scientific community, particularly because unmanned aerial robotic platforms offer reliable alternatives for acquiring and collecting data and information from the Red Planet. However, the specific conditions of the Martian environment result in a restricted flight envelope when flying close to Mars and then landing on the surface of Mars. Therefore, in addition to the requirement to develop an aerial platform suitable for operations on Mars, autonomous navigation strategies and robust controllers are also needed for exploration tasks. It is argued that hexacopters with their relatively compact design represent a promising solution for autonomous exploration tasks on Mars, overcoming at the same time the limitations of wheel-based rovers. This research focuses on the design of a Mars hexacopter for a scouting mission in the Jezero region of Mars. The configuration and architecture of the hexacopter follow NASA conceptual study of the Mars science helicopter. Then, the mission profile for mapping the Belva crater is examined, followed by a detailed approach to implement and test observer-based navigation and control strategies. A comprehensive simulated experiments environment based on the integration of robot operating system and Ardupilot is also presented, used to validate the overall system architecture and mission parameters considering both the morphological shape of the explored crater and the atmospheric conditions of Mars.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3365667</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attitude control ; Autonomous navigation ; Blades ; Data acquisition ; Flight envelopes ; Helicopters ; hexacopter ; Laser radar ; Mars ; Mars craters ; Mars environment ; Mars exploration ; Mars landing ; Mars surface ; nonlinear control ; observer ; Robust control ; Rotors ; Sensors ; Simultaneous localization and mapping ; SLAM ; Three-dimensional displays</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-06, Vol.60 (3), p.3569-3581</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ce1708e822ea400a9e16860eefa013eda7e46756eaf271fbdbd6c9fe325fcf503</cites><orcidid>0000-0001-6394-8606 ; 0000-0002-2668-1639 ; 0000-0001-8599-0418 ; 0000-0003-2393-8539 ; 0000-0003-2252-0894 ; 0000-0003-4104-4352 ; 0000-0002-9103-9749 ; 0000-0002-2386-3146 ; 0000-0001-9943-1975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10433767$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Sopegno, Laura</creatorcontrib><creatorcontrib>Martini, Simone</creatorcontrib><creatorcontrib>Pedone, Salvatore</creatorcontrib><creatorcontrib>Fagiolini, Adriano</creatorcontrib><creatorcontrib>Rutherford, Matthew J.</creatorcontrib><creatorcontrib>Stefanovic, Margareta</creatorcontrib><creatorcontrib>Rizzo, Alessandro</creatorcontrib><creatorcontrib>Livreri, Patrizia</creatorcontrib><creatorcontrib>Valavanis, Kimon P.</creatorcontrib><title>An Advanced Hexacopter for Mars Exploration: Attitude Control and Autonomous Navigation</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Mars exploration has recently witnessed major interest within the scientific community, particularly because unmanned aerial robotic platforms offer reliable alternatives for acquiring and collecting data and information from the Red Planet. However, the specific conditions of the Martian environment result in a restricted flight envelope when flying close to Mars and then landing on the surface of Mars. Therefore, in addition to the requirement to develop an aerial platform suitable for operations on Mars, autonomous navigation strategies and robust controllers are also needed for exploration tasks. It is argued that hexacopters with their relatively compact design represent a promising solution for autonomous exploration tasks on Mars, overcoming at the same time the limitations of wheel-based rovers. This research focuses on the design of a Mars hexacopter for a scouting mission in the Jezero region of Mars. The configuration and architecture of the hexacopter follow NASA conceptual study of the Mars science helicopter. Then, the mission profile for mapping the Belva crater is examined, followed by a detailed approach to implement and test observer-based navigation and control strategies. A comprehensive simulated experiments environment based on the integration of robot operating system and Ardupilot is also presented, used to validate the overall system architecture and mission parameters considering both the morphological shape of the explored crater and the atmospheric conditions of Mars.</description><subject>Attitude control</subject><subject>Autonomous navigation</subject><subject>Blades</subject><subject>Data acquisition</subject><subject>Flight envelopes</subject><subject>Helicopters</subject><subject>hexacopter</subject><subject>Laser radar</subject><subject>Mars</subject><subject>Mars craters</subject><subject>Mars environment</subject><subject>Mars exploration</subject><subject>Mars landing</subject><subject>Mars surface</subject><subject>nonlinear control</subject><subject>observer</subject><subject>Robust control</subject><subject>Rotors</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Three-dimensional displays</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1X5tNvC2lWqHqwYrHkO5OZEu7WZNsqf_erfXgaXiZ552BB6FrSiaUEn23LGdvE0aYmHAucymLEzSieV5kWhJ-ikaEUJVpltNzdBHjeohCCT5CH2WLy3pn2wpqPIe9rXyXIGDnA362IeLZvtv4YFPj23tcptSkvgY89W0KfoNtW-OyT771W99H_GJ3zecve4nOnN1EuPqbY_T-MFtO59ni9fFpWi6yiimdsgpoQRQoxsAKQqwGKpUkAM4SyqG2BQhZ5BKsYwV1q3pVy0o74Cx3lcsJH6Pb490u-K8eYjJr34d2eGk4kVJzpQUbKHqkquBjDOBMF5qtDd-GEnPwZw7-zMGf-fM3dG6OnQYA_vGC82JY_wBmGG0n</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sopegno, Laura</creator><creator>Martini, Simone</creator><creator>Pedone, Salvatore</creator><creator>Fagiolini, Adriano</creator><creator>Rutherford, Matthew J.</creator><creator>Stefanovic, Margareta</creator><creator>Rizzo, Alessandro</creator><creator>Livreri, Patrizia</creator><creator>Valavanis, Kimon P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6394-8606</orcidid><orcidid>https://orcid.org/0000-0002-2668-1639</orcidid><orcidid>https://orcid.org/0000-0001-8599-0418</orcidid><orcidid>https://orcid.org/0000-0003-2393-8539</orcidid><orcidid>https://orcid.org/0000-0003-2252-0894</orcidid><orcidid>https://orcid.org/0000-0003-4104-4352</orcidid><orcidid>https://orcid.org/0000-0002-9103-9749</orcidid><orcidid>https://orcid.org/0000-0002-2386-3146</orcidid><orcidid>https://orcid.org/0000-0001-9943-1975</orcidid></search><sort><creationdate>20240601</creationdate><title>An Advanced Hexacopter for Mars Exploration: Attitude Control and Autonomous Navigation</title><author>Sopegno, Laura ; Martini, Simone ; Pedone, Salvatore ; Fagiolini, Adriano ; Rutherford, Matthew J. ; Stefanovic, Margareta ; Rizzo, Alessandro ; Livreri, Patrizia ; Valavanis, Kimon P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ce1708e822ea400a9e16860eefa013eda7e46756eaf271fbdbd6c9fe325fcf503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attitude control</topic><topic>Autonomous navigation</topic><topic>Blades</topic><topic>Data acquisition</topic><topic>Flight envelopes</topic><topic>Helicopters</topic><topic>hexacopter</topic><topic>Laser radar</topic><topic>Mars</topic><topic>Mars craters</topic><topic>Mars environment</topic><topic>Mars exploration</topic><topic>Mars landing</topic><topic>Mars surface</topic><topic>nonlinear control</topic><topic>observer</topic><topic>Robust control</topic><topic>Rotors</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sopegno, Laura</creatorcontrib><creatorcontrib>Martini, Simone</creatorcontrib><creatorcontrib>Pedone, Salvatore</creatorcontrib><creatorcontrib>Fagiolini, Adriano</creatorcontrib><creatorcontrib>Rutherford, Matthew J.</creatorcontrib><creatorcontrib>Stefanovic, Margareta</creatorcontrib><creatorcontrib>Rizzo, Alessandro</creatorcontrib><creatorcontrib>Livreri, Patrizia</creatorcontrib><creatorcontrib>Valavanis, Kimon P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sopegno, Laura</au><au>Martini, Simone</au><au>Pedone, Salvatore</au><au>Fagiolini, Adriano</au><au>Rutherford, Matthew J.</au><au>Stefanovic, Margareta</au><au>Rizzo, Alessandro</au><au>Livreri, Patrizia</au><au>Valavanis, Kimon P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Advanced Hexacopter for Mars Exploration: Attitude Control and Autonomous Navigation</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>3569</spage><epage>3581</epage><pages>3569-3581</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Mars exploration has recently witnessed major interest within the scientific community, particularly because unmanned aerial robotic platforms offer reliable alternatives for acquiring and collecting data and information from the Red Planet. However, the specific conditions of the Martian environment result in a restricted flight envelope when flying close to Mars and then landing on the surface of Mars. Therefore, in addition to the requirement to develop an aerial platform suitable for operations on Mars, autonomous navigation strategies and robust controllers are also needed for exploration tasks. It is argued that hexacopters with their relatively compact design represent a promising solution for autonomous exploration tasks on Mars, overcoming at the same time the limitations of wheel-based rovers. This research focuses on the design of a Mars hexacopter for a scouting mission in the Jezero region of Mars. The configuration and architecture of the hexacopter follow NASA conceptual study of the Mars science helicopter. Then, the mission profile for mapping the Belva crater is examined, followed by a detailed approach to implement and test observer-based navigation and control strategies. A comprehensive simulated experiments environment based on the integration of robot operating system and Ardupilot is also presented, used to validate the overall system architecture and mission parameters considering both the morphological shape of the explored crater and the atmospheric conditions of Mars.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2024.3365667</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6394-8606</orcidid><orcidid>https://orcid.org/0000-0002-2668-1639</orcidid><orcidid>https://orcid.org/0000-0001-8599-0418</orcidid><orcidid>https://orcid.org/0000-0003-2393-8539</orcidid><orcidid>https://orcid.org/0000-0003-2252-0894</orcidid><orcidid>https://orcid.org/0000-0003-4104-4352</orcidid><orcidid>https://orcid.org/0000-0002-9103-9749</orcidid><orcidid>https://orcid.org/0000-0002-2386-3146</orcidid><orcidid>https://orcid.org/0000-0001-9943-1975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-06, Vol.60 (3), p.3569-3581 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_3066938942 |
source | IEEE Electronic Library (IEL) |
subjects | Attitude control Autonomous navigation Blades Data acquisition Flight envelopes Helicopters hexacopter Laser radar Mars Mars craters Mars environment Mars exploration Mars landing Mars surface nonlinear control observer Robust control Rotors Sensors Simultaneous localization and mapping SLAM Three-dimensional displays |
title | An Advanced Hexacopter for Mars Exploration: Attitude Control and Autonomous Navigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Advanced%20Hexacopter%20for%20Mars%20Exploration:%20Attitude%20Control%20and%20Autonomous%20Navigation&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Sopegno,%20Laura&rft.date=2024-06-01&rft.volume=60&rft.issue=3&rft.spage=3569&rft.epage=3581&rft.pages=3569-3581&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3365667&rft_dat=%3Cproquest_cross%3E3066938942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066938942&rft_id=info:pmid/&rft_ieee_id=10433767&rfr_iscdi=true |