Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion

A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2024-06, Vol.60 (3), p.2722-2734
Hauptverfasser: Yan, Jun, Huang, Zheng, Wu, Xiaohuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2734
container_issue 3
container_start_page 2722
container_title IEEE transactions on aerospace and electronic systems
container_volume 60
creator Yan, Jun
Huang, Zheng
Wu, Xiaohuan
description A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: region determination by LTE and Bluetooth signal and (2) refined localization: position estimation by camera image and Wi-Fi signal. To maximize the efficiency, we develop data fusion algorithm, aiming the following: 1) combine the RSSI measurement of Bluetooth and LTE signal to form coarse localization fingerprint; 2) transform the RSSI measurements of Wi-Fi signal into image representation by linear mapping method; 3) fuse the camera image and Wi-Fi radio image by the pixel level image fusion and pyramid decomposition method. The proposed solution is unique in that its offline phase exploits support vector machine for all regions to generate region classification functions. And for each region, it exploits convolution neural network to generate position regression function. The online phase executes a coarse localization step to estimate the region by using the region classification functions and a refined step to estimate the position by using the position regression function. Experiment results show that the proposed algorithm outperforms existing schemes.
doi_str_mv 10.1109/TAES.2023.3328571
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3066938411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10301612</ieee_id><sourcerecordid>3066938411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-29433432181af1179e586b11fc7b71dc3f3633224d8fa7530edbc6d49287be2a3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn-OzEdsZStVApFUPbFctxHJqqtYudDvDrcZQOTKc7ve_u3kPoEfAEABcvm-l8PSGY0AmlROQcrtAI8pynBcP0Go0wBpEWJIdbdBfCPraZyOgIfa6PynennbMmfVXB1MnS1s75pHRaHdpf1bXOJtvQ2q9kpfSutSYpjfK2HyhbJ6vzoWuDO3ttIto4fxyQxTnEco9uGnUI5uFSx2i7mG9m72n58bacTctUA2ddSoqM0owSEKAaAF6YXLAKoNG84lBr2lAWfZGsFo3iOcWmrjSrs4IIXhmi6Bg9D3tP3n2fTejkPr5k40lJMWMFFRlAVMGg0t6F4E0jT76N_n8kYNnHKPsYZR-jvMQYmaeBaY0x__QUAwNC_wBk4W5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066938411</pqid></control><display><type>article</type><title>Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Jun ; Huang, Zheng ; Wu, Xiaohuan</creator><creatorcontrib>Yan, Jun ; Huang, Zheng ; Wu, Xiaohuan</creatorcontrib><description>A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: region determination by LTE and Bluetooth signal and (2) refined localization: position estimation by camera image and Wi-Fi signal. To maximize the efficiency, we develop data fusion algorithm, aiming the following: 1) combine the RSSI measurement of Bluetooth and LTE signal to form coarse localization fingerprint; 2) transform the RSSI measurements of Wi-Fi signal into image representation by linear mapping method; 3) fuse the camera image and Wi-Fi radio image by the pixel level image fusion and pyramid decomposition method. The proposed solution is unique in that its offline phase exploits support vector machine for all regions to generate region classification functions. And for each region, it exploits convolution neural network to generate position regression function. The online phase executes a coarse localization step to estimate the region by using the region classification functions and a refined step to estimate the position by using the position regression function. Experiment results show that the proposed algorithm outperforms existing schemes.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3328571</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Bluetooth ; Cameras ; Classification ; Computer vision ; Data integration ; Estimation ; Fingerprints ; Hybrid localization ; image fusion ; Indoor environments ; indoor localization ; Localization ; Location awareness ; Machine learning ; Radio imagery ; received signal strength indicator ; Signal strength ; Smartphones ; Support vector machines ; Telecommunications ; Wireless communication ; Wireless fidelity ; Wireless sensor networks</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-06, Vol.60 (3), p.2722-2734</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-29433432181af1179e586b11fc7b71dc3f3633224d8fa7530edbc6d49287be2a3</cites><orcidid>0000-0001-7113-0249 ; 0009-0009-6933-6390 ; 0000-0003-3190-6115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10301612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10301612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Huang, Zheng</creatorcontrib><creatorcontrib>Wu, Xiaohuan</creatorcontrib><title>Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: region determination by LTE and Bluetooth signal and (2) refined localization: position estimation by camera image and Wi-Fi signal. To maximize the efficiency, we develop data fusion algorithm, aiming the following: 1) combine the RSSI measurement of Bluetooth and LTE signal to form coarse localization fingerprint; 2) transform the RSSI measurements of Wi-Fi signal into image representation by linear mapping method; 3) fuse the camera image and Wi-Fi radio image by the pixel level image fusion and pyramid decomposition method. The proposed solution is unique in that its offline phase exploits support vector machine for all regions to generate region classification functions. And for each region, it exploits convolution neural network to generate position regression function. The online phase executes a coarse localization step to estimate the region by using the region classification functions and a refined step to estimate the position by using the position regression function. Experiment results show that the proposed algorithm outperforms existing schemes.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bluetooth</subject><subject>Cameras</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Data integration</subject><subject>Estimation</subject><subject>Fingerprints</subject><subject>Hybrid localization</subject><subject>image fusion</subject><subject>Indoor environments</subject><subject>indoor localization</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>Radio imagery</subject><subject>received signal strength indicator</subject><subject>Signal strength</subject><subject>Smartphones</subject><subject>Support vector machines</subject><subject>Telecommunications</subject><subject>Wireless communication</subject><subject>Wireless fidelity</subject><subject>Wireless sensor networks</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn-OzEdsZStVApFUPbFctxHJqqtYudDvDrcZQOTKc7ve_u3kPoEfAEABcvm-l8PSGY0AmlROQcrtAI8pynBcP0Go0wBpEWJIdbdBfCPraZyOgIfa6PynennbMmfVXB1MnS1s75pHRaHdpf1bXOJtvQ2q9kpfSutSYpjfK2HyhbJ6vzoWuDO3ttIto4fxyQxTnEco9uGnUI5uFSx2i7mG9m72n58bacTctUA2ddSoqM0owSEKAaAF6YXLAKoNG84lBr2lAWfZGsFo3iOcWmrjSrs4IIXhmi6Bg9D3tP3n2fTejkPr5k40lJMWMFFRlAVMGg0t6F4E0jT76N_n8kYNnHKPsYZR-jvMQYmaeBaY0x__QUAwNC_wBk4W5w</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yan, Jun</creator><creator>Huang, Zheng</creator><creator>Wu, Xiaohuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7113-0249</orcidid><orcidid>https://orcid.org/0009-0009-6933-6390</orcidid><orcidid>https://orcid.org/0000-0003-3190-6115</orcidid></search><sort><creationdate>20240601</creationdate><title>Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion</title><author>Yan, Jun ; Huang, Zheng ; Wu, Xiaohuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-29433432181af1179e586b11fc7b71dc3f3633224d8fa7530edbc6d49287be2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bluetooth</topic><topic>Cameras</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Data integration</topic><topic>Estimation</topic><topic>Fingerprints</topic><topic>Hybrid localization</topic><topic>image fusion</topic><topic>Indoor environments</topic><topic>indoor localization</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>Radio imagery</topic><topic>received signal strength indicator</topic><topic>Signal strength</topic><topic>Smartphones</topic><topic>Support vector machines</topic><topic>Telecommunications</topic><topic>Wireless communication</topic><topic>Wireless fidelity</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Huang, Zheng</creatorcontrib><creatorcontrib>Wu, Xiaohuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Jun</au><au>Huang, Zheng</au><au>Wu, Xiaohuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>2722</spage><epage>2734</epage><pages>2722-2734</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: region determination by LTE and Bluetooth signal and (2) refined localization: position estimation by camera image and Wi-Fi signal. To maximize the efficiency, we develop data fusion algorithm, aiming the following: 1) combine the RSSI measurement of Bluetooth and LTE signal to form coarse localization fingerprint; 2) transform the RSSI measurements of Wi-Fi signal into image representation by linear mapping method; 3) fuse the camera image and Wi-Fi radio image by the pixel level image fusion and pyramid decomposition method. The proposed solution is unique in that its offline phase exploits support vector machine for all regions to generate region classification functions. And for each region, it exploits convolution neural network to generate position regression function. The online phase executes a coarse localization step to estimate the region by using the region classification functions and a refined step to estimate the position by using the position regression function. Experiment results show that the proposed algorithm outperforms existing schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3328571</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7113-0249</orcidid><orcidid>https://orcid.org/0009-0009-6933-6390</orcidid><orcidid>https://orcid.org/0000-0003-3190-6115</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2024-06, Vol.60 (3), p.2722-2734
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_journals_3066938411
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Bluetooth
Cameras
Classification
Computer vision
Data integration
Estimation
Fingerprints
Hybrid localization
image fusion
Indoor environments
indoor localization
Localization
Location awareness
Machine learning
Radio imagery
received signal strength indicator
Signal strength
Smartphones
Support vector machines
Telecommunications
Wireless communication
Wireless fidelity
Wireless sensor networks
title Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smartphone-Based%20Indoor%20Localization%20Using%20Machine%20Learning%20and%20Multisource%20Information%20Fusion&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Yan,%20Jun&rft.date=2024-06-01&rft.volume=60&rft.issue=3&rft.spage=2722&rft.epage=2734&rft.pages=2722-2734&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3328571&rft_dat=%3Cproquest_RIE%3E3066938411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066938411&rft_id=info:pmid/&rft_ieee_id=10301612&rfr_iscdi=true