Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion
A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: re...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2024-06, Vol.60 (3), p.2722-2734 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2734 |
---|---|
container_issue | 3 |
container_start_page | 2722 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 60 |
creator | Yan, Jun Huang, Zheng Wu, Xiaohuan |
description | A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: region determination by LTE and Bluetooth signal and (2) refined localization: position estimation by camera image and Wi-Fi signal. To maximize the efficiency, we develop data fusion algorithm, aiming the following: 1) combine the RSSI measurement of Bluetooth and LTE signal to form coarse localization fingerprint; 2) transform the RSSI measurements of Wi-Fi signal into image representation by linear mapping method; 3) fuse the camera image and Wi-Fi radio image by the pixel level image fusion and pyramid decomposition method. The proposed solution is unique in that its offline phase exploits support vector machine for all regions to generate region classification functions. And for each region, it exploits convolution neural network to generate position regression function. The online phase executes a coarse localization step to estimate the region by using the region classification functions and a refined step to estimate the position by using the position regression function. Experiment results show that the proposed algorithm outperforms existing schemes. |
doi_str_mv | 10.1109/TAES.2023.3328571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3066938411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10301612</ieee_id><sourcerecordid>3066938411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-29433432181af1179e586b11fc7b71dc3f3633224d8fa7530edbc6d49287be2a3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn-OzEdsZStVApFUPbFctxHJqqtYudDvDrcZQOTKc7ve_u3kPoEfAEABcvm-l8PSGY0AmlROQcrtAI8pynBcP0Go0wBpEWJIdbdBfCPraZyOgIfa6PynennbMmfVXB1MnS1s75pHRaHdpf1bXOJtvQ2q9kpfSutSYpjfK2HyhbJ6vzoWuDO3ttIto4fxyQxTnEco9uGnUI5uFSx2i7mG9m72n58bacTctUA2ddSoqM0owSEKAaAF6YXLAKoNG84lBr2lAWfZGsFo3iOcWmrjSrs4IIXhmi6Bg9D3tP3n2fTejkPr5k40lJMWMFFRlAVMGg0t6F4E0jT76N_n8kYNnHKPsYZR-jvMQYmaeBaY0x__QUAwNC_wBk4W5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066938411</pqid></control><display><type>article</type><title>Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Jun ; Huang, Zheng ; Wu, Xiaohuan</creator><creatorcontrib>Yan, Jun ; Huang, Zheng ; Wu, Xiaohuan</creatorcontrib><description>A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: region determination by LTE and Bluetooth signal and (2) refined localization: position estimation by camera image and Wi-Fi signal. To maximize the efficiency, we develop data fusion algorithm, aiming the following: 1) combine the RSSI measurement of Bluetooth and LTE signal to form coarse localization fingerprint; 2) transform the RSSI measurements of Wi-Fi signal into image representation by linear mapping method; 3) fuse the camera image and Wi-Fi radio image by the pixel level image fusion and pyramid decomposition method. The proposed solution is unique in that its offline phase exploits support vector machine for all regions to generate region classification functions. And for each region, it exploits convolution neural network to generate position regression function. The online phase executes a coarse localization step to estimate the region by using the region classification functions and a refined step to estimate the position by using the position regression function. Experiment results show that the proposed algorithm outperforms existing schemes.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3328571</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Bluetooth ; Cameras ; Classification ; Computer vision ; Data integration ; Estimation ; Fingerprints ; Hybrid localization ; image fusion ; Indoor environments ; indoor localization ; Localization ; Location awareness ; Machine learning ; Radio imagery ; received signal strength indicator ; Signal strength ; Smartphones ; Support vector machines ; Telecommunications ; Wireless communication ; Wireless fidelity ; Wireless sensor networks</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-06, Vol.60 (3), p.2722-2734</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-29433432181af1179e586b11fc7b71dc3f3633224d8fa7530edbc6d49287be2a3</cites><orcidid>0000-0001-7113-0249 ; 0009-0009-6933-6390 ; 0000-0003-3190-6115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10301612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10301612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Huang, Zheng</creatorcontrib><creatorcontrib>Wu, Xiaohuan</creatorcontrib><title>Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: region determination by LTE and Bluetooth signal and (2) refined localization: position estimation by camera image and Wi-Fi signal. To maximize the efficiency, we develop data fusion algorithm, aiming the following: 1) combine the RSSI measurement of Bluetooth and LTE signal to form coarse localization fingerprint; 2) transform the RSSI measurements of Wi-Fi signal into image representation by linear mapping method; 3) fuse the camera image and Wi-Fi radio image by the pixel level image fusion and pyramid decomposition method. The proposed solution is unique in that its offline phase exploits support vector machine for all regions to generate region classification functions. And for each region, it exploits convolution neural network to generate position regression function. The online phase executes a coarse localization step to estimate the region by using the region classification functions and a refined step to estimate the position by using the position regression function. Experiment results show that the proposed algorithm outperforms existing schemes.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bluetooth</subject><subject>Cameras</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Data integration</subject><subject>Estimation</subject><subject>Fingerprints</subject><subject>Hybrid localization</subject><subject>image fusion</subject><subject>Indoor environments</subject><subject>indoor localization</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>Radio imagery</subject><subject>received signal strength indicator</subject><subject>Signal strength</subject><subject>Smartphones</subject><subject>Support vector machines</subject><subject>Telecommunications</subject><subject>Wireless communication</subject><subject>Wireless fidelity</subject><subject>Wireless sensor networks</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn-OzEdsZStVApFUPbFctxHJqqtYudDvDrcZQOTKc7ve_u3kPoEfAEABcvm-l8PSGY0AmlROQcrtAI8pynBcP0Go0wBpEWJIdbdBfCPraZyOgIfa6PynennbMmfVXB1MnS1s75pHRaHdpf1bXOJtvQ2q9kpfSutSYpjfK2HyhbJ6vzoWuDO3ttIto4fxyQxTnEco9uGnUI5uFSx2i7mG9m72n58bacTctUA2ddSoqM0owSEKAaAF6YXLAKoNG84lBr2lAWfZGsFo3iOcWmrjSrs4IIXhmi6Bg9D3tP3n2fTejkPr5k40lJMWMFFRlAVMGg0t6F4E0jT76N_n8kYNnHKPsYZR-jvMQYmaeBaY0x__QUAwNC_wBk4W5w</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yan, Jun</creator><creator>Huang, Zheng</creator><creator>Wu, Xiaohuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7113-0249</orcidid><orcidid>https://orcid.org/0009-0009-6933-6390</orcidid><orcidid>https://orcid.org/0000-0003-3190-6115</orcidid></search><sort><creationdate>20240601</creationdate><title>Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion</title><author>Yan, Jun ; Huang, Zheng ; Wu, Xiaohuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-29433432181af1179e586b11fc7b71dc3f3633224d8fa7530edbc6d49287be2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bluetooth</topic><topic>Cameras</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Data integration</topic><topic>Estimation</topic><topic>Fingerprints</topic><topic>Hybrid localization</topic><topic>image fusion</topic><topic>Indoor environments</topic><topic>indoor localization</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>Radio imagery</topic><topic>received signal strength indicator</topic><topic>Signal strength</topic><topic>Smartphones</topic><topic>Support vector machines</topic><topic>Telecommunications</topic><topic>Wireless communication</topic><topic>Wireless fidelity</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Huang, Zheng</creatorcontrib><creatorcontrib>Wu, Xiaohuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Jun</au><au>Huang, Zheng</au><au>Wu, Xiaohuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>2722</spage><epage>2734</epage><pages>2722-2734</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A two-phase smartphone localization technique that uses received signal strength indicator (RSSI) fingerprints of long term evolution (LTE) signal, Bluetooth signal, Wi-Fi signal and the internal camera sensor is proposed for indoor environments. It contains the following. 1) coarse localization: region determination by LTE and Bluetooth signal and (2) refined localization: position estimation by camera image and Wi-Fi signal. To maximize the efficiency, we develop data fusion algorithm, aiming the following: 1) combine the RSSI measurement of Bluetooth and LTE signal to form coarse localization fingerprint; 2) transform the RSSI measurements of Wi-Fi signal into image representation by linear mapping method; 3) fuse the camera image and Wi-Fi radio image by the pixel level image fusion and pyramid decomposition method. The proposed solution is unique in that its offline phase exploits support vector machine for all regions to generate region classification functions. And for each region, it exploits convolution neural network to generate position regression function. The online phase executes a coarse localization step to estimate the region by using the region classification functions and a refined step to estimate the position by using the position regression function. Experiment results show that the proposed algorithm outperforms existing schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3328571</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7113-0249</orcidid><orcidid>https://orcid.org/0009-0009-6933-6390</orcidid><orcidid>https://orcid.org/0000-0003-3190-6115</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-06, Vol.60 (3), p.2722-2734 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_3066938411 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Bluetooth Cameras Classification Computer vision Data integration Estimation Fingerprints Hybrid localization image fusion Indoor environments indoor localization Localization Location awareness Machine learning Radio imagery received signal strength indicator Signal strength Smartphones Support vector machines Telecommunications Wireless communication Wireless fidelity Wireless sensor networks |
title | Smartphone-Based Indoor Localization Using Machine Learning and Multisource Information Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smartphone-Based%20Indoor%20Localization%20Using%20Machine%20Learning%20and%20Multisource%20Information%20Fusion&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Yan,%20Jun&rft.date=2024-06-01&rft.volume=60&rft.issue=3&rft.spage=2722&rft.epage=2734&rft.pages=2722-2734&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3328571&rft_dat=%3Cproquest_RIE%3E3066938411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066938411&rft_id=info:pmid/&rft_ieee_id=10301612&rfr_iscdi=true |