An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models
We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have no...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-06, Vol.968 (2), p.56 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 56 |
container_title | The Astrophysical journal |
container_volume | 968 |
creator | Farag, Ebraheem Fontes, Christopher J. Timmes, F. X. Bellinger, Earl P. Guzik, Joyce A. Bauer, Evan B. Wood, Suzannah R. Mussack, Katie Hakel, Peter Colgan, James Kilcrease, David P. Sherrill, Manolo E. Raecke, Tryston C. Chidester, Morgan T. |
description | We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range to
Z
= 10
−6
to
Z
= 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity range
Z
= 10
−4
to
Z
= 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions between
X
= 0 and
X
= 0.1 including
X
= 10
−2
, 10
−3
, 10
−4
, 10
−5
, 10
−6
that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables in
MESA
and find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity. |
doi_str_mv | 10.3847/1538-4357/ad4355 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_3066900120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_97248622ae8a4820bdbfeeb1215edc19</doaj_id><sourcerecordid>3066900120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-6328cdd7e3a3ad192215a9ef0d10272110ec1daaf2b1326f229e6537819176563</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0EEkvhztECjg31R-IPbku1tCtttRW7SNysiT2BrLJxiFOp_e_xElQu9DTy6PeeZ-YR8pazj9KU-oJX0hSlrPQFhFyqZ2Tx2HpOFoyxslBSf39JXqV0OD2FtQsSlj1d3Q_QBwx0hxONDd3ERJcdHHPZ3m7Wn-ke6g4TbXt6s9otP9H9w4AFp19jSthlaXFE6Ol2AN9ObQZzi-5iByO9iQG79Jq8aKBL-OZvPSPfvqz2l9fFZnu1vlxuCl-KasrjCeND0ChBQuBWCF6BxYYFzoQWnDP0PAA0ouZSqEYIi6qS2nDLtaqUPCPr2TdEOLhhbI8wPrgIrfvTiOMPB-PU-g6d1aI0SghAA6URrA51g1jz_CUGz232ejd7xTS1LuXN0P_0se_RT05IzY3VGXo_Q8MYf91hmtwh3o193tFJppRljAuWKTZTfswXG7F5HI0zdwrPnZJyp6TcHF6WfJglbRz-ecJwcFYZJ1yl3BCajJ3_B3vS9TdHr6KE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066900120</pqid></control><display><type>article</type><title>An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Farag, Ebraheem ; Fontes, Christopher J. ; Timmes, F. X. ; Bellinger, Earl P. ; Guzik, Joyce A. ; Bauer, Evan B. ; Wood, Suzannah R. ; Mussack, Katie ; Hakel, Peter ; Colgan, James ; Kilcrease, David P. ; Sherrill, Manolo E. ; Raecke, Tryston C. ; Chidester, Morgan T.</creator><creatorcontrib>Farag, Ebraheem ; Fontes, Christopher J. ; Timmes, F. X. ; Bellinger, Earl P. ; Guzik, Joyce A. ; Bauer, Evan B. ; Wood, Suzannah R. ; Mussack, Katie ; Hakel, Peter ; Colgan, James ; Kilcrease, David P. ; Sherrill, Manolo E. ; Raecke, Tryston C. ; Chidester, Morgan T. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range to
Z
= 10
−6
to
Z
= 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity range
Z
= 10
−4
to
Z
= 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions between
X
= 0 and
X
= 0.1 including
X
= 10
−2
, 10
−3
, 10
−4
, 10
−5
, 10
−6
that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables in
MESA
and find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad4355</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accuracy ; Astronomical models ; ASTRONOMY AND ASTROPHYSICS ; Atomic properties ; Hydrogen ; Metallicity ; Mixtures ; Opacity ; Solar convection ; Solar convection (astronomy) ; Solar convection zone ; Solar core ; Solar models ; Solar neutrinos ; Stellar atmospheric opacity ; Stellar evolution ; Stellar interiors ; Stellar models ; Stellar physics</subject><ispartof>The Astrophysical journal, 2024-06, Vol.968 (2), p.56</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-6328cdd7e3a3ad192215a9ef0d10272110ec1daaf2b1326f229e6537819176563</cites><orcidid>0000-0003-4456-4863 ; 0000-0003-1291-1533 ; 0000-0002-5794-4286 ; 0009-0002-2268-7352 ; 0000-0002-5107-8639 ; 0000-0002-0474-159X ; 0000-0003-1087-2964 ; 0000-0002-4791-6724 ; 0000-0003-1045-3858 ; 0000-0002-2319-5934 ; 0000-0002-5539-9034 ; 0000-0002-0312-7694 ; 0000-0002-7208-7681 ; 0000-0002-7936-4231 ; 0000000251078639 ; 0000000255399034 ; 0009000222687352 ; 0000000310453858 ; 0000000223195934 ; 0000000312911533 ; 0000000344564863 ; 0000000257944286 ; 0000000310872964 ; 0000000279364231 ; 0000000247916724 ; 0000000203127694 ; 0000000272087681 ; 000000020474159X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad4355/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38867,53842</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2371897$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Farag, Ebraheem</creatorcontrib><creatorcontrib>Fontes, Christopher J.</creatorcontrib><creatorcontrib>Timmes, F. X.</creatorcontrib><creatorcontrib>Bellinger, Earl P.</creatorcontrib><creatorcontrib>Guzik, Joyce A.</creatorcontrib><creatorcontrib>Bauer, Evan B.</creatorcontrib><creatorcontrib>Wood, Suzannah R.</creatorcontrib><creatorcontrib>Mussack, Katie</creatorcontrib><creatorcontrib>Hakel, Peter</creatorcontrib><creatorcontrib>Colgan, James</creatorcontrib><creatorcontrib>Kilcrease, David P.</creatorcontrib><creatorcontrib>Sherrill, Manolo E.</creatorcontrib><creatorcontrib>Raecke, Tryston C.</creatorcontrib><creatorcontrib>Chidester, Morgan T.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range to
Z
= 10
−6
to
Z
= 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity range
Z
= 10
−4
to
Z
= 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions between
X
= 0 and
X
= 0.1 including
X
= 10
−2
, 10
−3
, 10
−4
, 10
−5
, 10
−6
that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables in
MESA
and find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.</description><subject>Accuracy</subject><subject>Astronomical models</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Atomic properties</subject><subject>Hydrogen</subject><subject>Metallicity</subject><subject>Mixtures</subject><subject>Opacity</subject><subject>Solar convection</subject><subject>Solar convection (astronomy)</subject><subject>Solar convection zone</subject><subject>Solar core</subject><subject>Solar models</subject><subject>Solar neutrinos</subject><subject>Stellar atmospheric opacity</subject><subject>Stellar evolution</subject><subject>Stellar interiors</subject><subject>Stellar models</subject><subject>Stellar physics</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1v1DAQxS0EEkvhztECjg31R-IPbku1tCtttRW7SNysiT2BrLJxiFOp_e_xElQu9DTy6PeeZ-YR8pazj9KU-oJX0hSlrPQFhFyqZ2Tx2HpOFoyxslBSf39JXqV0OD2FtQsSlj1d3Q_QBwx0hxONDd3ERJcdHHPZ3m7Wn-ke6g4TbXt6s9otP9H9w4AFp19jSthlaXFE6Ol2AN9ObQZzi-5iByO9iQG79Jq8aKBL-OZvPSPfvqz2l9fFZnu1vlxuCl-KasrjCeND0ChBQuBWCF6BxYYFzoQWnDP0PAA0ouZSqEYIi6qS2nDLtaqUPCPr2TdEOLhhbI8wPrgIrfvTiOMPB-PU-g6d1aI0SghAA6URrA51g1jz_CUGz232ejd7xTS1LuXN0P_0se_RT05IzY3VGXo_Q8MYf91hmtwh3o193tFJppRljAuWKTZTfswXG7F5HI0zdwrPnZJyp6TcHF6WfJglbRz-ecJwcFYZJ1yl3BCajJ3_B3vS9TdHr6KE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Farag, Ebraheem</creator><creator>Fontes, Christopher J.</creator><creator>Timmes, F. X.</creator><creator>Bellinger, Earl P.</creator><creator>Guzik, Joyce A.</creator><creator>Bauer, Evan B.</creator><creator>Wood, Suzannah R.</creator><creator>Mussack, Katie</creator><creator>Hakel, Peter</creator><creator>Colgan, James</creator><creator>Kilcrease, David P.</creator><creator>Sherrill, Manolo E.</creator><creator>Raecke, Tryston C.</creator><creator>Chidester, Morgan T.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4456-4863</orcidid><orcidid>https://orcid.org/0000-0003-1291-1533</orcidid><orcidid>https://orcid.org/0000-0002-5794-4286</orcidid><orcidid>https://orcid.org/0009-0002-2268-7352</orcidid><orcidid>https://orcid.org/0000-0002-5107-8639</orcidid><orcidid>https://orcid.org/0000-0002-0474-159X</orcidid><orcidid>https://orcid.org/0000-0003-1087-2964</orcidid><orcidid>https://orcid.org/0000-0002-4791-6724</orcidid><orcidid>https://orcid.org/0000-0003-1045-3858</orcidid><orcidid>https://orcid.org/0000-0002-2319-5934</orcidid><orcidid>https://orcid.org/0000-0002-5539-9034</orcidid><orcidid>https://orcid.org/0000-0002-0312-7694</orcidid><orcidid>https://orcid.org/0000-0002-7208-7681</orcidid><orcidid>https://orcid.org/0000-0002-7936-4231</orcidid><orcidid>https://orcid.org/0000000251078639</orcidid><orcidid>https://orcid.org/0000000255399034</orcidid><orcidid>https://orcid.org/0009000222687352</orcidid><orcidid>https://orcid.org/0000000310453858</orcidid><orcidid>https://orcid.org/0000000223195934</orcidid><orcidid>https://orcid.org/0000000312911533</orcidid><orcidid>https://orcid.org/0000000344564863</orcidid><orcidid>https://orcid.org/0000000257944286</orcidid><orcidid>https://orcid.org/0000000310872964</orcidid><orcidid>https://orcid.org/0000000279364231</orcidid><orcidid>https://orcid.org/0000000247916724</orcidid><orcidid>https://orcid.org/0000000203127694</orcidid><orcidid>https://orcid.org/0000000272087681</orcidid><orcidid>https://orcid.org/000000020474159X</orcidid></search><sort><creationdate>20240601</creationdate><title>An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models</title><author>Farag, Ebraheem ; Fontes, Christopher J. ; Timmes, F. X. ; Bellinger, Earl P. ; Guzik, Joyce A. ; Bauer, Evan B. ; Wood, Suzannah R. ; Mussack, Katie ; Hakel, Peter ; Colgan, James ; Kilcrease, David P. ; Sherrill, Manolo E. ; Raecke, Tryston C. ; Chidester, Morgan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-6328cdd7e3a3ad192215a9ef0d10272110ec1daaf2b1326f229e6537819176563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Astronomical models</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Atomic properties</topic><topic>Hydrogen</topic><topic>Metallicity</topic><topic>Mixtures</topic><topic>Opacity</topic><topic>Solar convection</topic><topic>Solar convection (astronomy)</topic><topic>Solar convection zone</topic><topic>Solar core</topic><topic>Solar models</topic><topic>Solar neutrinos</topic><topic>Stellar atmospheric opacity</topic><topic>Stellar evolution</topic><topic>Stellar interiors</topic><topic>Stellar models</topic><topic>Stellar physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farag, Ebraheem</creatorcontrib><creatorcontrib>Fontes, Christopher J.</creatorcontrib><creatorcontrib>Timmes, F. X.</creatorcontrib><creatorcontrib>Bellinger, Earl P.</creatorcontrib><creatorcontrib>Guzik, Joyce A.</creatorcontrib><creatorcontrib>Bauer, Evan B.</creatorcontrib><creatorcontrib>Wood, Suzannah R.</creatorcontrib><creatorcontrib>Mussack, Katie</creatorcontrib><creatorcontrib>Hakel, Peter</creatorcontrib><creatorcontrib>Colgan, James</creatorcontrib><creatorcontrib>Kilcrease, David P.</creatorcontrib><creatorcontrib>Sherrill, Manolo E.</creatorcontrib><creatorcontrib>Raecke, Tryston C.</creatorcontrib><creatorcontrib>Chidester, Morgan T.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farag, Ebraheem</au><au>Fontes, Christopher J.</au><au>Timmes, F. X.</au><au>Bellinger, Earl P.</au><au>Guzik, Joyce A.</au><au>Bauer, Evan B.</au><au>Wood, Suzannah R.</au><au>Mussack, Katie</au><au>Hakel, Peter</au><au>Colgan, James</au><au>Kilcrease, David P.</au><au>Sherrill, Manolo E.</au><au>Raecke, Tryston C.</au><au>Chidester, Morgan T.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>968</volume><issue>2</issue><spage>56</spage><pages>56-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range to
Z
= 10
−6
to
Z
= 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity range
Z
= 10
−4
to
Z
= 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions between
X
= 0 and
X
= 0.1 including
X
= 10
−2
, 10
−3
, 10
−4
, 10
−5
, 10
−6
that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables in
MESA
and find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad4355</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4456-4863</orcidid><orcidid>https://orcid.org/0000-0003-1291-1533</orcidid><orcidid>https://orcid.org/0000-0002-5794-4286</orcidid><orcidid>https://orcid.org/0009-0002-2268-7352</orcidid><orcidid>https://orcid.org/0000-0002-5107-8639</orcidid><orcidid>https://orcid.org/0000-0002-0474-159X</orcidid><orcidid>https://orcid.org/0000-0003-1087-2964</orcidid><orcidid>https://orcid.org/0000-0002-4791-6724</orcidid><orcidid>https://orcid.org/0000-0003-1045-3858</orcidid><orcidid>https://orcid.org/0000-0002-2319-5934</orcidid><orcidid>https://orcid.org/0000-0002-5539-9034</orcidid><orcidid>https://orcid.org/0000-0002-0312-7694</orcidid><orcidid>https://orcid.org/0000-0002-7208-7681</orcidid><orcidid>https://orcid.org/0000-0002-7936-4231</orcidid><orcidid>https://orcid.org/0000000251078639</orcidid><orcidid>https://orcid.org/0000000255399034</orcidid><orcidid>https://orcid.org/0009000222687352</orcidid><orcidid>https://orcid.org/0000000310453858</orcidid><orcidid>https://orcid.org/0000000223195934</orcidid><orcidid>https://orcid.org/0000000312911533</orcidid><orcidid>https://orcid.org/0000000344564863</orcidid><orcidid>https://orcid.org/0000000257944286</orcidid><orcidid>https://orcid.org/0000000310872964</orcidid><orcidid>https://orcid.org/0000000279364231</orcidid><orcidid>https://orcid.org/0000000247916724</orcidid><orcidid>https://orcid.org/0000000203127694</orcidid><orcidid>https://orcid.org/0000000272087681</orcidid><orcidid>https://orcid.org/000000020474159X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-06, Vol.968 (2), p.56 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_3066900120 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Astronomical models ASTRONOMY AND ASTROPHYSICS Atomic properties Hydrogen Metallicity Mixtures Opacity Solar convection Solar convection (astronomy) Solar convection zone Solar core Solar models Solar neutrinos Stellar atmospheric opacity Stellar evolution Stellar interiors Stellar models Stellar physics |
title | An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Expanded%20Set%20of%20Los%20Alamos%20OPLIB%20Tables%20in%20MESA:%20Type-1%20Rosseland-mean%20Opacities%20and%20Solar%20Models&rft.jtitle=The%20Astrophysical%20journal&rft.au=Farag,%20Ebraheem&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-06-01&rft.volume=968&rft.issue=2&rft.spage=56&rft.pages=56-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad4355&rft_dat=%3Cproquest_osti_%3E3066900120%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066900120&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_97248622ae8a4820bdbfeeb1215edc19&rfr_iscdi=true |