An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models

We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-06, Vol.968 (2), p.56
Hauptverfasser: Farag, Ebraheem, Fontes, Christopher J., Timmes, F. X., Bellinger, Earl P., Guzik, Joyce A., Bauer, Evan B., Wood, Suzannah R., Mussack, Katie, Hakel, Peter, Colgan, James, Kilcrease, David P., Sherrill, Manolo E., Raecke, Tryston C., Chidester, Morgan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 56
container_title The Astrophysical journal
container_volume 968
creator Farag, Ebraheem
Fontes, Christopher J.
Timmes, F. X.
Bellinger, Earl P.
Guzik, Joyce A.
Bauer, Evan B.
Wood, Suzannah R.
Mussack, Katie
Hakel, Peter
Colgan, James
Kilcrease, David P.
Sherrill, Manolo E.
Raecke, Tryston C.
Chidester, Morgan T.
description We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range to Z = 10 −6 to Z = 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity range Z = 10 −4 to Z = 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions between X = 0 and X = 0.1 including X = 10 −2 , 10 −3 , 10 −4 , 10 −5 , 10 −6 that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables in MESA and find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.
doi_str_mv 10.3847/1538-4357/ad4355
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_3066900120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_97248622ae8a4820bdbfeeb1215edc19</doaj_id><sourcerecordid>3066900120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-6328cdd7e3a3ad192215a9ef0d10272110ec1daaf2b1326f229e6537819176563</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0EEkvhztECjg31R-IPbku1tCtttRW7SNysiT2BrLJxiFOp_e_xElQu9DTy6PeeZ-YR8pazj9KU-oJX0hSlrPQFhFyqZ2Tx2HpOFoyxslBSf39JXqV0OD2FtQsSlj1d3Q_QBwx0hxONDd3ERJcdHHPZ3m7Wn-ke6g4TbXt6s9otP9H9w4AFp19jSthlaXFE6Ol2AN9ObQZzi-5iByO9iQG79Jq8aKBL-OZvPSPfvqz2l9fFZnu1vlxuCl-KasrjCeND0ChBQuBWCF6BxYYFzoQWnDP0PAA0ouZSqEYIi6qS2nDLtaqUPCPr2TdEOLhhbI8wPrgIrfvTiOMPB-PU-g6d1aI0SghAA6URrA51g1jz_CUGz232ejd7xTS1LuXN0P_0se_RT05IzY3VGXo_Q8MYf91hmtwh3o193tFJppRljAuWKTZTfswXG7F5HI0zdwrPnZJyp6TcHF6WfJglbRz-ecJwcFYZJ1yl3BCajJ3_B3vS9TdHr6KE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066900120</pqid></control><display><type>article</type><title>An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Farag, Ebraheem ; Fontes, Christopher J. ; Timmes, F. X. ; Bellinger, Earl P. ; Guzik, Joyce A. ; Bauer, Evan B. ; Wood, Suzannah R. ; Mussack, Katie ; Hakel, Peter ; Colgan, James ; Kilcrease, David P. ; Sherrill, Manolo E. ; Raecke, Tryston C. ; Chidester, Morgan T.</creator><creatorcontrib>Farag, Ebraheem ; Fontes, Christopher J. ; Timmes, F. X. ; Bellinger, Earl P. ; Guzik, Joyce A. ; Bauer, Evan B. ; Wood, Suzannah R. ; Mussack, Katie ; Hakel, Peter ; Colgan, James ; Kilcrease, David P. ; Sherrill, Manolo E. ; Raecke, Tryston C. ; Chidester, Morgan T. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range to Z = 10 −6 to Z = 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity range Z = 10 −4 to Z = 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions between X = 0 and X = 0.1 including X = 10 −2 , 10 −3 , 10 −4 , 10 −5 , 10 −6 that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables in MESA and find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad4355</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accuracy ; Astronomical models ; ASTRONOMY AND ASTROPHYSICS ; Atomic properties ; Hydrogen ; Metallicity ; Mixtures ; Opacity ; Solar convection ; Solar convection (astronomy) ; Solar convection zone ; Solar core ; Solar models ; Solar neutrinos ; Stellar atmospheric opacity ; Stellar evolution ; Stellar interiors ; Stellar models ; Stellar physics</subject><ispartof>The Astrophysical journal, 2024-06, Vol.968 (2), p.56</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-6328cdd7e3a3ad192215a9ef0d10272110ec1daaf2b1326f229e6537819176563</cites><orcidid>0000-0003-4456-4863 ; 0000-0003-1291-1533 ; 0000-0002-5794-4286 ; 0009-0002-2268-7352 ; 0000-0002-5107-8639 ; 0000-0002-0474-159X ; 0000-0003-1087-2964 ; 0000-0002-4791-6724 ; 0000-0003-1045-3858 ; 0000-0002-2319-5934 ; 0000-0002-5539-9034 ; 0000-0002-0312-7694 ; 0000-0002-7208-7681 ; 0000-0002-7936-4231 ; 0000000251078639 ; 0000000255399034 ; 0009000222687352 ; 0000000310453858 ; 0000000223195934 ; 0000000312911533 ; 0000000344564863 ; 0000000257944286 ; 0000000310872964 ; 0000000279364231 ; 0000000247916724 ; 0000000203127694 ; 0000000272087681 ; 000000020474159X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad4355/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38867,53842</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2371897$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Farag, Ebraheem</creatorcontrib><creatorcontrib>Fontes, Christopher J.</creatorcontrib><creatorcontrib>Timmes, F. X.</creatorcontrib><creatorcontrib>Bellinger, Earl P.</creatorcontrib><creatorcontrib>Guzik, Joyce A.</creatorcontrib><creatorcontrib>Bauer, Evan B.</creatorcontrib><creatorcontrib>Wood, Suzannah R.</creatorcontrib><creatorcontrib>Mussack, Katie</creatorcontrib><creatorcontrib>Hakel, Peter</creatorcontrib><creatorcontrib>Colgan, James</creatorcontrib><creatorcontrib>Kilcrease, David P.</creatorcontrib><creatorcontrib>Sherrill, Manolo E.</creatorcontrib><creatorcontrib>Raecke, Tryston C.</creatorcontrib><creatorcontrib>Chidester, Morgan T.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range to Z = 10 −6 to Z = 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity range Z = 10 −4 to Z = 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions between X = 0 and X = 0.1 including X = 10 −2 , 10 −3 , 10 −4 , 10 −5 , 10 −6 that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables in MESA and find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.</description><subject>Accuracy</subject><subject>Astronomical models</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Atomic properties</subject><subject>Hydrogen</subject><subject>Metallicity</subject><subject>Mixtures</subject><subject>Opacity</subject><subject>Solar convection</subject><subject>Solar convection (astronomy)</subject><subject>Solar convection zone</subject><subject>Solar core</subject><subject>Solar models</subject><subject>Solar neutrinos</subject><subject>Stellar atmospheric opacity</subject><subject>Stellar evolution</subject><subject>Stellar interiors</subject><subject>Stellar models</subject><subject>Stellar physics</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1v1DAQxS0EEkvhztECjg31R-IPbku1tCtttRW7SNysiT2BrLJxiFOp_e_xElQu9DTy6PeeZ-YR8pazj9KU-oJX0hSlrPQFhFyqZ2Tx2HpOFoyxslBSf39JXqV0OD2FtQsSlj1d3Q_QBwx0hxONDd3ERJcdHHPZ3m7Wn-ke6g4TbXt6s9otP9H9w4AFp19jSthlaXFE6Ol2AN9ObQZzi-5iByO9iQG79Jq8aKBL-OZvPSPfvqz2l9fFZnu1vlxuCl-KasrjCeND0ChBQuBWCF6BxYYFzoQWnDP0PAA0ouZSqEYIi6qS2nDLtaqUPCPr2TdEOLhhbI8wPrgIrfvTiOMPB-PU-g6d1aI0SghAA6URrA51g1jz_CUGz232ejd7xTS1LuXN0P_0se_RT05IzY3VGXo_Q8MYf91hmtwh3o193tFJppRljAuWKTZTfswXG7F5HI0zdwrPnZJyp6TcHF6WfJglbRz-ecJwcFYZJ1yl3BCajJ3_B3vS9TdHr6KE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Farag, Ebraheem</creator><creator>Fontes, Christopher J.</creator><creator>Timmes, F. X.</creator><creator>Bellinger, Earl P.</creator><creator>Guzik, Joyce A.</creator><creator>Bauer, Evan B.</creator><creator>Wood, Suzannah R.</creator><creator>Mussack, Katie</creator><creator>Hakel, Peter</creator><creator>Colgan, James</creator><creator>Kilcrease, David P.</creator><creator>Sherrill, Manolo E.</creator><creator>Raecke, Tryston C.</creator><creator>Chidester, Morgan T.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4456-4863</orcidid><orcidid>https://orcid.org/0000-0003-1291-1533</orcidid><orcidid>https://orcid.org/0000-0002-5794-4286</orcidid><orcidid>https://orcid.org/0009-0002-2268-7352</orcidid><orcidid>https://orcid.org/0000-0002-5107-8639</orcidid><orcidid>https://orcid.org/0000-0002-0474-159X</orcidid><orcidid>https://orcid.org/0000-0003-1087-2964</orcidid><orcidid>https://orcid.org/0000-0002-4791-6724</orcidid><orcidid>https://orcid.org/0000-0003-1045-3858</orcidid><orcidid>https://orcid.org/0000-0002-2319-5934</orcidid><orcidid>https://orcid.org/0000-0002-5539-9034</orcidid><orcidid>https://orcid.org/0000-0002-0312-7694</orcidid><orcidid>https://orcid.org/0000-0002-7208-7681</orcidid><orcidid>https://orcid.org/0000-0002-7936-4231</orcidid><orcidid>https://orcid.org/0000000251078639</orcidid><orcidid>https://orcid.org/0000000255399034</orcidid><orcidid>https://orcid.org/0009000222687352</orcidid><orcidid>https://orcid.org/0000000310453858</orcidid><orcidid>https://orcid.org/0000000223195934</orcidid><orcidid>https://orcid.org/0000000312911533</orcidid><orcidid>https://orcid.org/0000000344564863</orcidid><orcidid>https://orcid.org/0000000257944286</orcidid><orcidid>https://orcid.org/0000000310872964</orcidid><orcidid>https://orcid.org/0000000279364231</orcidid><orcidid>https://orcid.org/0000000247916724</orcidid><orcidid>https://orcid.org/0000000203127694</orcidid><orcidid>https://orcid.org/0000000272087681</orcidid><orcidid>https://orcid.org/000000020474159X</orcidid></search><sort><creationdate>20240601</creationdate><title>An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models</title><author>Farag, Ebraheem ; Fontes, Christopher J. ; Timmes, F. X. ; Bellinger, Earl P. ; Guzik, Joyce A. ; Bauer, Evan B. ; Wood, Suzannah R. ; Mussack, Katie ; Hakel, Peter ; Colgan, James ; Kilcrease, David P. ; Sherrill, Manolo E. ; Raecke, Tryston C. ; Chidester, Morgan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-6328cdd7e3a3ad192215a9ef0d10272110ec1daaf2b1326f229e6537819176563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Astronomical models</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Atomic properties</topic><topic>Hydrogen</topic><topic>Metallicity</topic><topic>Mixtures</topic><topic>Opacity</topic><topic>Solar convection</topic><topic>Solar convection (astronomy)</topic><topic>Solar convection zone</topic><topic>Solar core</topic><topic>Solar models</topic><topic>Solar neutrinos</topic><topic>Stellar atmospheric opacity</topic><topic>Stellar evolution</topic><topic>Stellar interiors</topic><topic>Stellar models</topic><topic>Stellar physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farag, Ebraheem</creatorcontrib><creatorcontrib>Fontes, Christopher J.</creatorcontrib><creatorcontrib>Timmes, F. X.</creatorcontrib><creatorcontrib>Bellinger, Earl P.</creatorcontrib><creatorcontrib>Guzik, Joyce A.</creatorcontrib><creatorcontrib>Bauer, Evan B.</creatorcontrib><creatorcontrib>Wood, Suzannah R.</creatorcontrib><creatorcontrib>Mussack, Katie</creatorcontrib><creatorcontrib>Hakel, Peter</creatorcontrib><creatorcontrib>Colgan, James</creatorcontrib><creatorcontrib>Kilcrease, David P.</creatorcontrib><creatorcontrib>Sherrill, Manolo E.</creatorcontrib><creatorcontrib>Raecke, Tryston C.</creatorcontrib><creatorcontrib>Chidester, Morgan T.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farag, Ebraheem</au><au>Fontes, Christopher J.</au><au>Timmes, F. X.</au><au>Bellinger, Earl P.</au><au>Guzik, Joyce A.</au><au>Bauer, Evan B.</au><au>Wood, Suzannah R.</au><au>Mussack, Katie</au><au>Hakel, Peter</au><au>Colgan, James</au><au>Kilcrease, David P.</au><au>Sherrill, Manolo E.</au><au>Raecke, Tryston C.</au><au>Chidester, Morgan T.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>968</volume><issue>2</issue><spage>56</spage><pages>56-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range to Z = 10 −6 to Z = 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity range Z = 10 −4 to Z = 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions between X = 0 and X = 0.1 including X = 10 −2 , 10 −3 , 10 −4 , 10 −5 , 10 −6 that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables in MESA and find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad4355</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4456-4863</orcidid><orcidid>https://orcid.org/0000-0003-1291-1533</orcidid><orcidid>https://orcid.org/0000-0002-5794-4286</orcidid><orcidid>https://orcid.org/0009-0002-2268-7352</orcidid><orcidid>https://orcid.org/0000-0002-5107-8639</orcidid><orcidid>https://orcid.org/0000-0002-0474-159X</orcidid><orcidid>https://orcid.org/0000-0003-1087-2964</orcidid><orcidid>https://orcid.org/0000-0002-4791-6724</orcidid><orcidid>https://orcid.org/0000-0003-1045-3858</orcidid><orcidid>https://orcid.org/0000-0002-2319-5934</orcidid><orcidid>https://orcid.org/0000-0002-5539-9034</orcidid><orcidid>https://orcid.org/0000-0002-0312-7694</orcidid><orcidid>https://orcid.org/0000-0002-7208-7681</orcidid><orcidid>https://orcid.org/0000-0002-7936-4231</orcidid><orcidid>https://orcid.org/0000000251078639</orcidid><orcidid>https://orcid.org/0000000255399034</orcidid><orcidid>https://orcid.org/0009000222687352</orcidid><orcidid>https://orcid.org/0000000310453858</orcidid><orcidid>https://orcid.org/0000000223195934</orcidid><orcidid>https://orcid.org/0000000312911533</orcidid><orcidid>https://orcid.org/0000000344564863</orcidid><orcidid>https://orcid.org/0000000257944286</orcidid><orcidid>https://orcid.org/0000000310872964</orcidid><orcidid>https://orcid.org/0000000279364231</orcidid><orcidid>https://orcid.org/0000000247916724</orcidid><orcidid>https://orcid.org/0000000203127694</orcidid><orcidid>https://orcid.org/0000000272087681</orcidid><orcidid>https://orcid.org/000000020474159X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-06, Vol.968 (2), p.56
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_3066900120
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Astronomical models
ASTRONOMY AND ASTROPHYSICS
Atomic properties
Hydrogen
Metallicity
Mixtures
Opacity
Solar convection
Solar convection (astronomy)
Solar convection zone
Solar core
Solar models
Solar neutrinos
Stellar atmospheric opacity
Stellar evolution
Stellar interiors
Stellar models
Stellar physics
title An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Expanded%20Set%20of%20Los%20Alamos%20OPLIB%20Tables%20in%20MESA:%20Type-1%20Rosseland-mean%20Opacities%20and%20Solar%20Models&rft.jtitle=The%20Astrophysical%20journal&rft.au=Farag,%20Ebraheem&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-06-01&rft.volume=968&rft.issue=2&rft.spage=56&rft.pages=56-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad4355&rft_dat=%3Cproquest_osti_%3E3066900120%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066900120&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_97248622ae8a4820bdbfeeb1215edc19&rfr_iscdi=true