Jackknife Model Averaging for Composite Quantile Regression

In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2024, Vol.37 (4), p.1604-1637
Hauptverfasser: You, Kang, Wang, Miaomiao, Zou, Guohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1637
container_issue 4
container_start_page 1604
container_title Journal of systems science and complexity
container_volume 37
creator You, Kang
Wang, Miaomiao
Zou, Guohua
description In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.
doi_str_mv 10.1007/s11424-024-2448-1
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3066865608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865608</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-655f3d7808cf85b60159a492f7aa5fc3f18d9edc0f39ebc4362d432aa683c6e73</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK7-AG8Fz9HJZxM8LcVPVkTRc8i2k6W7a1OTrr_fLhU8DDOHh3lfHkIuGVwzgPImMya5pDAOl9JQdkRmTClLS9Dl8XgDWKoZl6fkLOcNgNAWzIzcPvt6u-3agMVLbHBXLH4w-XXbrYsQU1HFrz7mdsDibe-7od1h8Y7rhDm3sTsnJ8HvMl787Tn5vL_7qB7p8vXhqVosac-UHqhWKoimNGDqYNRKA1PWS8tD6b0KtQjMNBabGoKwuKql0LyRgnuvjag1lmJOrqa_fYrfe8yD28R96sZIJ0Bro5UGM1J8onKfxvqY_ikG7iDJTZLcKMkdJDkmfgF19Fl6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066865608</pqid></control><display><type>article</type><title>Jackknife Model Averaging for Composite Quantile Regression</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>You, Kang ; Wang, Miaomiao ; Zou, Guohua</creator><creatorcontrib>You, Kang ; Wang, Miaomiao ; Zou, Guohua</creatorcontrib><description>In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-024-2448-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Control ; Error analysis ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Quantiles ; Regression models ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2024, Vol.37 (4), p.1604-1637</ispartof><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2024</rights><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-024-2448-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-024-2448-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>You, Kang</creatorcontrib><creatorcontrib>Wang, Miaomiao</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><title>Jackknife Model Averaging for Composite Quantile Regression</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Error analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Quantiles</subject><subject>Regression models</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAQhoMouK7-AG8Fz9HJZxM8LcVPVkTRc8i2k6W7a1OTrr_fLhU8DDOHh3lfHkIuGVwzgPImMya5pDAOl9JQdkRmTClLS9Dl8XgDWKoZl6fkLOcNgNAWzIzcPvt6u-3agMVLbHBXLH4w-XXbrYsQU1HFrz7mdsDibe-7od1h8Y7rhDm3sTsnJ8HvMl787Tn5vL_7qB7p8vXhqVosac-UHqhWKoimNGDqYNRKA1PWS8tD6b0KtQjMNBabGoKwuKql0LyRgnuvjag1lmJOrqa_fYrfe8yD28R96sZIJ0Bro5UGM1J8onKfxvqY_ikG7iDJTZLcKMkdJDkmfgF19Fl6</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>You, Kang</creator><creator>Wang, Miaomiao</creator><creator>Zou, Guohua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>Jackknife Model Averaging for Composite Quantile Regression</title><author>You, Kang ; Wang, Miaomiao ; Zou, Guohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-655f3d7808cf85b60159a492f7aa5fc3f18d9edc0f39ebc4362d432aa683c6e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Error analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Quantiles</topic><topic>Regression models</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Kang</creatorcontrib><creatorcontrib>Wang, Miaomiao</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Kang</au><au>Wang, Miaomiao</au><au>Zou, Guohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jackknife Model Averaging for Composite Quantile Regression</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2024</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>1604</spage><epage>1637</epage><pages>1604-1637</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-024-2448-1</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2024, Vol.37 (4), p.1604-1637
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_3066865608
source SpringerNature Journals; Alma/SFX Local Collection
subjects Complex Systems
Control
Error analysis
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Quantiles
Regression models
Statistics
Systems Theory
title Jackknife Model Averaging for Composite Quantile Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jackknife%20Model%20Averaging%20for%20Composite%20Quantile%20Regression&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=You,%20Kang&rft.date=2024&rft.volume=37&rft.issue=4&rft.spage=1604&rft.epage=1637&rft.pages=1604-1637&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-024-2448-1&rft_dat=%3Cproquest_sprin%3E3066865608%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066865608&rft_id=info:pmid/&rfr_iscdi=true