Jackknife Model Averaging for Composite Quantile Regression
In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is base...
Gespeichert in:
Veröffentlicht in: | Journal of systems science and complexity 2024, Vol.37 (4), p.1604-1637 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1637 |
---|---|
container_issue | 4 |
container_start_page | 1604 |
container_title | Journal of systems science and complexity |
container_volume | 37 |
creator | You, Kang Wang, Miaomiao Zou, Guohua |
description | In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data. |
doi_str_mv | 10.1007/s11424-024-2448-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3066865608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865608</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-655f3d7808cf85b60159a492f7aa5fc3f18d9edc0f39ebc4362d432aa683c6e73</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK7-AG8Fz9HJZxM8LcVPVkTRc8i2k6W7a1OTrr_fLhU8DDOHh3lfHkIuGVwzgPImMya5pDAOl9JQdkRmTClLS9Dl8XgDWKoZl6fkLOcNgNAWzIzcPvt6u-3agMVLbHBXLH4w-XXbrYsQU1HFrz7mdsDibe-7od1h8Y7rhDm3sTsnJ8HvMl787Tn5vL_7qB7p8vXhqVosac-UHqhWKoimNGDqYNRKA1PWS8tD6b0KtQjMNBabGoKwuKql0LyRgnuvjag1lmJOrqa_fYrfe8yD28R96sZIJ0Bro5UGM1J8onKfxvqY_ikG7iDJTZLcKMkdJDkmfgF19Fl6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066865608</pqid></control><display><type>article</type><title>Jackknife Model Averaging for Composite Quantile Regression</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>You, Kang ; Wang, Miaomiao ; Zou, Guohua</creator><creatorcontrib>You, Kang ; Wang, Miaomiao ; Zou, Guohua</creatorcontrib><description>In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-024-2448-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Control ; Error analysis ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Quantiles ; Regression models ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2024, Vol.37 (4), p.1604-1637</ispartof><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024</rights><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-024-2448-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-024-2448-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>You, Kang</creatorcontrib><creatorcontrib>Wang, Miaomiao</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><title>Jackknife Model Averaging for Composite Quantile Regression</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Error analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Quantiles</subject><subject>Regression models</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAQhoMouK7-AG8Fz9HJZxM8LcVPVkTRc8i2k6W7a1OTrr_fLhU8DDOHh3lfHkIuGVwzgPImMya5pDAOl9JQdkRmTClLS9Dl8XgDWKoZl6fkLOcNgNAWzIzcPvt6u-3agMVLbHBXLH4w-XXbrYsQU1HFrz7mdsDibe-7od1h8Y7rhDm3sTsnJ8HvMl787Tn5vL_7qB7p8vXhqVosac-UHqhWKoimNGDqYNRKA1PWS8tD6b0KtQjMNBabGoKwuKql0LyRgnuvjag1lmJOrqa_fYrfe8yD28R96sZIJ0Bro5UGM1J8onKfxvqY_ikG7iDJTZLcKMkdJDkmfgF19Fl6</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>You, Kang</creator><creator>Wang, Miaomiao</creator><creator>Zou, Guohua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>Jackknife Model Averaging for Composite Quantile Regression</title><author>You, Kang ; Wang, Miaomiao ; Zou, Guohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-655f3d7808cf85b60159a492f7aa5fc3f18d9edc0f39ebc4362d432aa683c6e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Error analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Quantiles</topic><topic>Regression models</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Kang</creatorcontrib><creatorcontrib>Wang, Miaomiao</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Kang</au><au>Wang, Miaomiao</au><au>Zou, Guohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jackknife Model Averaging for Composite Quantile Regression</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2024</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>1604</spage><epage>1637</epage><pages>1604-1637</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error. Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-024-2448-1</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2024, Vol.37 (4), p.1604-1637 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_3066865608 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Complex Systems Control Error analysis Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Quantiles Regression models Statistics Systems Theory |
title | Jackknife Model Averaging for Composite Quantile Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jackknife%20Model%20Averaging%20for%20Composite%20Quantile%20Regression&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=You,%20Kang&rft.date=2024&rft.volume=37&rft.issue=4&rft.spage=1604&rft.epage=1637&rft.pages=1604-1637&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-024-2448-1&rft_dat=%3Cproquest_sprin%3E3066865608%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066865608&rft_id=info:pmid/&rfr_iscdi=true |