Maximum Principle for Stochastic Control System with Elephant Memory and Jump Diffusion

Motivated by a duopoly game problem, the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable. Firstly, the authors establish the unique solvability of an anticipated b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2024-08, Vol.37 (4), p.1392-1412
Hauptverfasser: Feng, Siqi, Gao, Lei, Wang, Guangchen, Xiao, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1412
container_issue 4
container_start_page 1392
container_title Journal of systems science and complexity
container_volume 37
creator Feng, Siqi
Gao, Lei
Wang, Guangchen
Xiao, Hua
description Motivated by a duopoly game problem, the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable. Firstly, the authors establish the unique solvability of an anticipated backward stochastic differential equation, derive a stochastic maximum principle, and prove a verification theorem for the aforementioned optimal control problem. Furthermore, the authors generalize these results to nonzero-sum stochastic differential game problems. Finally, the authors apply the theoretical results to the duopoly game problem and obtain the corresponding Nash equilibrium solution.
doi_str_mv 10.1007/s11424-024-3163-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066865332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-d7c5b27d2e7ed4a44239575a5872ba61300b6ddd5a69a10fcf603519b0e57a8d3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG8Bz9VJ0iTtUdZvdlFYxWNIm9TN0jY1SdH993ap4MnDMHN43nfgSZJzDJcYQFwFjDOSpTAOxZym4iCZYcaKVAAXh-MNUKQck-w4OQlhC0B5AfkseV-pb9sOLXrxtqts3xhUO4_W0VUbFaKt0MJ10bsGrXchmhZ92bhBt43pN6qLaGVa53dIdRo9DW2PbmxdD8G67jQ5qlUTzNnvnidvd7evi4d0-Xz_uLhephXheUy1qFhJhCZGGJ2pLCO0YIIplgtSKo4pQMm11kzxQmGoq5oDZbgowTChck3nycXU23v3OZgQ5dYNvhtfSgqc55xRSkYKT1TlXQje1LL3tlV-JzHIvT85-ZOjP7n3J8WYIVMmjGz3Yfxf8_-hH4xzctA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066865332</pqid></control><display><type>article</type><title>Maximum Principle for Stochastic Control System with Elephant Memory and Jump Diffusion</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Feng, Siqi ; Gao, Lei ; Wang, Guangchen ; Xiao, Hua</creator><creatorcontrib>Feng, Siqi ; Gao, Lei ; Wang, Guangchen ; Xiao, Hua</creatorcontrib><description>Motivated by a duopoly game problem, the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable. Firstly, the authors establish the unique solvability of an anticipated backward stochastic differential equation, derive a stochastic maximum principle, and prove a verification theorem for the aforementioned optimal control problem. Furthermore, the authors generalize these results to nonzero-sum stochastic differential game problems. Finally, the authors apply the theoretical results to the duopoly game problem and obtain the corresponding Nash equilibrium solution.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-024-3163-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Control ; Control systems ; Differential equations ; Differential games ; Elephants ; Game theory ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Maximum principle ; Operations Research/Decision Theory ; Optimal control ; Statistics ; Stochastic processes ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2024-08, Vol.37 (4), p.1392-1412</ispartof><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2024</rights><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-d7c5b27d2e7ed4a44239575a5872ba61300b6ddd5a69a10fcf603519b0e57a8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-024-3163-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-024-3163-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Feng, Siqi</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><creatorcontrib>Wang, Guangchen</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><title>Maximum Principle for Stochastic Control System with Elephant Memory and Jump Diffusion</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>Motivated by a duopoly game problem, the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable. Firstly, the authors establish the unique solvability of an anticipated backward stochastic differential equation, derive a stochastic maximum principle, and prove a verification theorem for the aforementioned optimal control problem. Furthermore, the authors generalize these results to nonzero-sum stochastic differential game problems. Finally, the authors apply the theoretical results to the duopoly game problem and obtain the corresponding Nash equilibrium solution.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Control systems</subject><subject>Differential equations</subject><subject>Differential games</subject><subject>Elephants</subject><subject>Game theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Maximum principle</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhosouK7-AG8Bz9VJ0iTtUdZvdlFYxWNIm9TN0jY1SdH993ap4MnDMHN43nfgSZJzDJcYQFwFjDOSpTAOxZym4iCZYcaKVAAXh-MNUKQck-w4OQlhC0B5AfkseV-pb9sOLXrxtqts3xhUO4_W0VUbFaKt0MJ10bsGrXchmhZ92bhBt43pN6qLaGVa53dIdRo9DW2PbmxdD8G67jQ5qlUTzNnvnidvd7evi4d0-Xz_uLhephXheUy1qFhJhCZGGJ2pLCO0YIIplgtSKo4pQMm11kzxQmGoq5oDZbgowTChck3nycXU23v3OZgQ5dYNvhtfSgqc55xRSkYKT1TlXQje1LL3tlV-JzHIvT85-ZOjP7n3J8WYIVMmjGz3Yfxf8_-hH4xzctA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Feng, Siqi</creator><creator>Gao, Lei</creator><creator>Wang, Guangchen</creator><creator>Xiao, Hua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Maximum Principle for Stochastic Control System with Elephant Memory and Jump Diffusion</title><author>Feng, Siqi ; Gao, Lei ; Wang, Guangchen ; Xiao, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-d7c5b27d2e7ed4a44239575a5872ba61300b6ddd5a69a10fcf603519b0e57a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Control systems</topic><topic>Differential equations</topic><topic>Differential games</topic><topic>Elephants</topic><topic>Game theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Maximum principle</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Siqi</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><creatorcontrib>Wang, Guangchen</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Siqi</au><au>Gao, Lei</au><au>Wang, Guangchen</au><au>Xiao, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Principle for Stochastic Control System with Elephant Memory and Jump Diffusion</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>1392</spage><epage>1412</epage><pages>1392-1412</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>Motivated by a duopoly game problem, the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable. Firstly, the authors establish the unique solvability of an anticipated backward stochastic differential equation, derive a stochastic maximum principle, and prove a verification theorem for the aforementioned optimal control problem. Furthermore, the authors generalize these results to nonzero-sum stochastic differential game problems. Finally, the authors apply the theoretical results to the duopoly game problem and obtain the corresponding Nash equilibrium solution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-024-3163-7</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2024-08, Vol.37 (4), p.1392-1412
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_3066865332
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Complex Systems
Control
Control systems
Differential equations
Differential games
Elephants
Game theory
Mathematics
Mathematics and Statistics
Mathematics of Computing
Maximum principle
Operations Research/Decision Theory
Optimal control
Statistics
Stochastic processes
Systems Theory
title Maximum Principle for Stochastic Control System with Elephant Memory and Jump Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Principle%20for%20Stochastic%20Control%20System%20with%20Elephant%20Memory%20and%20Jump%20Diffusion&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Feng,%20Siqi&rft.date=2024-08-01&rft.volume=37&rft.issue=4&rft.spage=1392&rft.epage=1412&rft.pages=1392-1412&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-024-3163-7&rft_dat=%3Cproquest_cross%3E3066865332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066865332&rft_id=info:pmid/&rfr_iscdi=true