Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo
Polynomiality criteria are proposed for single-variable functions of -valued logic with respect to composite modulus equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of -valued logic are obtained for each prime , . Al...
Gespeichert in:
Veröffentlicht in: | Moscow University computational mathematics and cybernetics 2024, Vol.48 (2), p.119-129 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 2 |
container_start_page | 119 |
container_title | Moscow University computational mathematics and cybernetics |
container_volume | 48 |
creator | Selezneva, S. N. |
description | Polynomiality criteria are proposed for single-variable functions of
-valued logic with respect to composite modulus
equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of
-valued logic are obtained for each prime
,
. All calculations in these algorithms are made in residue ring modulo
. These algorithms find the canonical polynomial of the input function if the answer is positive. The complexity of the resulting algorithms is estimated (relative to the number of operations for the field of
elements with possible constants). |
doi_str_mv | 10.3103/S0278641924700067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3066865323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865323</sourcerecordid><originalsourceid>FETCH-LOGICAL-p717-3ca5214bd003c90d34325257a47fb7255227ae6d23497f1bba97439a2001f0af3</originalsourceid><addsrcrecordid>eNplkEFLwzAUx4MoOKcfwFvAc_UlL03aoxTnhInChuCppG26ZWZNbdrDvr0tEzx4evB-P_6P9yfklsE9MsCHNXCVSMFSLhQASHVGZixFESWCJ-dkNuFo4pfkKoQ9QCw5JjPyme1M-WWbLe13hr57d2z8wWpn-yP1NV2PxJnoQ3dWF87QxdCUvfVNmOC4doOp6MpvbUkzf2h9sL2hr74anL8mF7V2wdz8zjnZLJ422TJavT2_ZI-rqFVMRVjqmDNRVABYplChQB7zWGmh6kLxOOZcaSMrjiJVNSsKnSqBqeYArAZd45zcnWLbzn8PJvT53g9dM17MEaRMZIwcR4ufrNB240um-7MY5FOD-b8G8QdSm2IY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066865323</pqid></control><display><type>article</type><title>Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo</title><source>SpringerNature Journals</source><creator>Selezneva, S. N.</creator><creatorcontrib>Selezneva, S. N.</creatorcontrib><description>Polynomiality criteria are proposed for single-variable functions of
-valued logic with respect to composite modulus
equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of
-valued logic are obtained for each prime
,
. All calculations in these algorithms are made in residue ring modulo
. These algorithms find the canonical polynomial of the input function if the answer is positive. The complexity of the resulting algorithms is estimated (relative to the number of operations for the field of
elements with possible constants).</description><identifier>ISSN: 0278-6419</identifier><identifier>EISSN: 1934-8428</identifier><identifier>DOI: 10.3103/S0278641924700067</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Criteria ; Logic ; Mathematics ; Mathematics and Statistics ; Polynomials ; Prime numbers</subject><ispartof>Moscow University computational mathematics and cybernetics, 2024, Vol.48 (2), p.119-129</ispartof><rights>Allerton Press, Inc. 2024</rights><rights>Allerton Press, Inc. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p717-3ca5214bd003c90d34325257a47fb7255227ae6d23497f1bba97439a2001f0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0278641924700067$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0278641924700067$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Selezneva, S. N.</creatorcontrib><title>Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo</title><title>Moscow University computational mathematics and cybernetics</title><addtitle>MoscowUniv.Comput.Math.Cybern</addtitle><description>Polynomiality criteria are proposed for single-variable functions of
-valued logic with respect to composite modulus
equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of
-valued logic are obtained for each prime
,
. All calculations in these algorithms are made in residue ring modulo
. These algorithms find the canonical polynomial of the input function if the answer is positive. The complexity of the resulting algorithms is estimated (relative to the number of operations for the field of
elements with possible constants).</description><subject>Algorithms</subject><subject>Criteria</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Prime numbers</subject><issn>0278-6419</issn><issn>1934-8428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkEFLwzAUx4MoOKcfwFvAc_UlL03aoxTnhInChuCppG26ZWZNbdrDvr0tEzx4evB-P_6P9yfklsE9MsCHNXCVSMFSLhQASHVGZixFESWCJ-dkNuFo4pfkKoQ9QCw5JjPyme1M-WWbLe13hr57d2z8wWpn-yP1NV2PxJnoQ3dWF87QxdCUvfVNmOC4doOp6MpvbUkzf2h9sL2hr74anL8mF7V2wdz8zjnZLJ422TJavT2_ZI-rqFVMRVjqmDNRVABYplChQB7zWGmh6kLxOOZcaSMrjiJVNSsKnSqBqeYArAZd45zcnWLbzn8PJvT53g9dM17MEaRMZIwcR4ufrNB240um-7MY5FOD-b8G8QdSm2IY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Selezneva, S. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo</title><author>Selezneva, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p717-3ca5214bd003c90d34325257a47fb7255227ae6d23497f1bba97439a2001f0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Criteria</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Prime numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selezneva, S. N.</creatorcontrib><jtitle>Moscow University computational mathematics and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selezneva, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo</atitle><jtitle>Moscow University computational mathematics and cybernetics</jtitle><stitle>MoscowUniv.Comput.Math.Cybern</stitle><date>2024</date><risdate>2024</risdate><volume>48</volume><issue>2</issue><spage>119</spage><epage>129</epage><pages>119-129</pages><issn>0278-6419</issn><eissn>1934-8428</eissn><abstract>Polynomiality criteria are proposed for single-variable functions of
-valued logic with respect to composite modulus
equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of
-valued logic are obtained for each prime
,
. All calculations in these algorithms are made in residue ring modulo
. These algorithms find the canonical polynomial of the input function if the answer is positive. The complexity of the resulting algorithms is estimated (relative to the number of operations for the field of
elements with possible constants).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0278641924700067</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-6419 |
ispartof | Moscow University computational mathematics and cybernetics, 2024, Vol.48 (2), p.119-129 |
issn | 0278-6419 1934-8428 |
language | eng |
recordid | cdi_proquest_journals_3066865323 |
source | SpringerNature Journals |
subjects | Algorithms Criteria Logic Mathematics Mathematics and Statistics Polynomials Prime numbers |
title | Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checking%20the%20Polynomiality%20of%20Single-Variable%20Functions%20of%20-Valued%20Logic%20Composite%20Modulo&rft.jtitle=Moscow%20University%20computational%20mathematics%20and%20cybernetics&rft.au=Selezneva,%20S.%20N.&rft.date=2024&rft.volume=48&rft.issue=2&rft.spage=119&rft.epage=129&rft.pages=119-129&rft.issn=0278-6419&rft.eissn=1934-8428&rft_id=info:doi/10.3103/S0278641924700067&rft_dat=%3Cproquest_sprin%3E3066865323%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066865323&rft_id=info:pmid/&rfr_iscdi=true |