Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo

Polynomiality criteria are proposed for single-variable functions of -valued logic with respect to composite modulus equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of -valued logic are obtained for each prime , . Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University computational mathematics and cybernetics 2024, Vol.48 (2), p.119-129
1. Verfasser: Selezneva, S. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 2
container_start_page 119
container_title Moscow University computational mathematics and cybernetics
container_volume 48
creator Selezneva, S. N.
description Polynomiality criteria are proposed for single-variable functions of -valued logic with respect to composite modulus equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of -valued logic are obtained for each prime , . All calculations in these algorithms are made in residue ring modulo . These algorithms find the canonical polynomial of the input function if the answer is positive. The complexity of the resulting algorithms is estimated (relative to the number of operations for the field of elements with possible constants).
doi_str_mv 10.3103/S0278641924700067
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3066865323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865323</sourcerecordid><originalsourceid>FETCH-LOGICAL-p717-3ca5214bd003c90d34325257a47fb7255227ae6d23497f1bba97439a2001f0af3</originalsourceid><addsrcrecordid>eNplkEFLwzAUx4MoOKcfwFvAc_UlL03aoxTnhInChuCppG26ZWZNbdrDvr0tEzx4evB-P_6P9yfklsE9MsCHNXCVSMFSLhQASHVGZixFESWCJ-dkNuFo4pfkKoQ9QCw5JjPyme1M-WWbLe13hr57d2z8wWpn-yP1NV2PxJnoQ3dWF87QxdCUvfVNmOC4doOp6MpvbUkzf2h9sL2hr74anL8mF7V2wdz8zjnZLJ422TJavT2_ZI-rqFVMRVjqmDNRVABYplChQB7zWGmh6kLxOOZcaSMrjiJVNSsKnSqBqeYArAZd45zcnWLbzn8PJvT53g9dM17MEaRMZIwcR4ufrNB240um-7MY5FOD-b8G8QdSm2IY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066865323</pqid></control><display><type>article</type><title>Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo</title><source>SpringerNature Journals</source><creator>Selezneva, S. N.</creator><creatorcontrib>Selezneva, S. N.</creatorcontrib><description>Polynomiality criteria are proposed for single-variable functions of -valued logic with respect to composite modulus equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of -valued logic are obtained for each prime , . All calculations in these algorithms are made in residue ring modulo . These algorithms find the canonical polynomial of the input function if the answer is positive. The complexity of the resulting algorithms is estimated (relative to the number of operations for the field of elements with possible constants).</description><identifier>ISSN: 0278-6419</identifier><identifier>EISSN: 1934-8428</identifier><identifier>DOI: 10.3103/S0278641924700067</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Criteria ; Logic ; Mathematics ; Mathematics and Statistics ; Polynomials ; Prime numbers</subject><ispartof>Moscow University computational mathematics and cybernetics, 2024, Vol.48 (2), p.119-129</ispartof><rights>Allerton Press, Inc. 2024</rights><rights>Allerton Press, Inc. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p717-3ca5214bd003c90d34325257a47fb7255227ae6d23497f1bba97439a2001f0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0278641924700067$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0278641924700067$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Selezneva, S. N.</creatorcontrib><title>Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo</title><title>Moscow University computational mathematics and cybernetics</title><addtitle>MoscowUniv.Comput.Math.Cybern</addtitle><description>Polynomiality criteria are proposed for single-variable functions of -valued logic with respect to composite modulus equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of -valued logic are obtained for each prime , . All calculations in these algorithms are made in residue ring modulo . These algorithms find the canonical polynomial of the input function if the answer is positive. The complexity of the resulting algorithms is estimated (relative to the number of operations for the field of elements with possible constants).</description><subject>Algorithms</subject><subject>Criteria</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Prime numbers</subject><issn>0278-6419</issn><issn>1934-8428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkEFLwzAUx4MoOKcfwFvAc_UlL03aoxTnhInChuCppG26ZWZNbdrDvr0tEzx4evB-P_6P9yfklsE9MsCHNXCVSMFSLhQASHVGZixFESWCJ-dkNuFo4pfkKoQ9QCw5JjPyme1M-WWbLe13hr57d2z8wWpn-yP1NV2PxJnoQ3dWF87QxdCUvfVNmOC4doOp6MpvbUkzf2h9sL2hr74anL8mF7V2wdz8zjnZLJ422TJavT2_ZI-rqFVMRVjqmDNRVABYplChQB7zWGmh6kLxOOZcaSMrjiJVNSsKnSqBqeYArAZd45zcnWLbzn8PJvT53g9dM17MEaRMZIwcR4ufrNB240um-7MY5FOD-b8G8QdSm2IY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Selezneva, S. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo</title><author>Selezneva, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p717-3ca5214bd003c90d34325257a47fb7255227ae6d23497f1bba97439a2001f0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Criteria</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Prime numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selezneva, S. N.</creatorcontrib><jtitle>Moscow University computational mathematics and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selezneva, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo</atitle><jtitle>Moscow University computational mathematics and cybernetics</jtitle><stitle>MoscowUniv.Comput.Math.Cybern</stitle><date>2024</date><risdate>2024</risdate><volume>48</volume><issue>2</issue><spage>119</spage><epage>129</epage><pages>119-129</pages><issn>0278-6419</issn><eissn>1934-8428</eissn><abstract>Polynomiality criteria are proposed for single-variable functions of -valued logic with respect to composite modulus equal to a power of a prime number. Based on these criteria, algorithms for checking the polynomiality of single-variable functions of -valued logic are obtained for each prime , . All calculations in these algorithms are made in residue ring modulo . These algorithms find the canonical polynomial of the input function if the answer is positive. The complexity of the resulting algorithms is estimated (relative to the number of operations for the field of elements with possible constants).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0278641924700067</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-6419
ispartof Moscow University computational mathematics and cybernetics, 2024, Vol.48 (2), p.119-129
issn 0278-6419
1934-8428
language eng
recordid cdi_proquest_journals_3066865323
source SpringerNature Journals
subjects Algorithms
Criteria
Logic
Mathematics
Mathematics and Statistics
Polynomials
Prime numbers
title Checking the Polynomiality of Single-Variable Functions of -Valued Logic Composite Modulo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checking%20the%20Polynomiality%20of%20Single-Variable%20Functions%20of%20-Valued%20Logic%20Composite%20Modulo&rft.jtitle=Moscow%20University%20computational%20mathematics%20and%20cybernetics&rft.au=Selezneva,%20S.%20N.&rft.date=2024&rft.volume=48&rft.issue=2&rft.spage=119&rft.epage=129&rft.pages=119-129&rft.issn=0278-6419&rft.eissn=1934-8428&rft_id=info:doi/10.3103/S0278641924700067&rft_dat=%3Cproquest_sprin%3E3066865323%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066865323&rft_id=info:pmid/&rfr_iscdi=true