Neural Network Method for Detecting Blur in Histological Images

In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software 2024-06, Vol.50 (3), p.224-230
Hauptverfasser: Nazarenko, G. S., Krylov, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 3
container_start_page 224
container_title Programming and computer software
container_volume 50
creator Nazarenko, G. S.
Krylov, A. S.
description In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the discrete cosine transform coefficients and estimation of the degree of sharpness of objects edges in the image. The efficiency of the algorithm is confirmed on images from the datasets PATH-DT-MSU [1] and FocusPath [2].
doi_str_mv 10.1134/S0361768824700026
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3066865179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865179</sourcerecordid><originalsourceid>FETCH-LOGICAL-p184t-3ab585e8953b52a45b512729410b31c65ead8be0aaea599f5929a7bcfeba75ce3</originalsourceid><addsrcrecordid>eNqFkDtPAzEQhC0EEiHwA-gsUR-s33aFeCdSCAVQn-zLXrhwxMHnE3-fi4JEQUG1xXwzox1CThmcMybkxTMIzYy2lksDAFzvkRHTYAvBNdsno61cbPVDctR1KwAGIOWIXM6xT76lc8xfMb3TR8xvcUHrmOgtZqxys17S67ZPtFnTSdPl2MZlUw2O6YdfYndMDmrfdnjyc8fk9f7u5WZSzJ4epjdXs2LDrMyF8EFZhdYpERT3UgXFuOFOMgiCVVqhX9iA4D165VytHHfehKrG4I2qUIzJ2S53k-Jnj10uV7FP66GyFKC11YoZ9x-lQTNnBorvqG6Thvcw_VIMyu2c5Z85xTdC5WXp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066606197</pqid></control><display><type>article</type><title>Neural Network Method for Detecting Blur in Histological Images</title><source>SpringerNature Journals</source><creator>Nazarenko, G. S. ; Krylov, A. S.</creator><creatorcontrib>Nazarenko, G. S. ; Krylov, A. S.</creatorcontrib><description>In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the discrete cosine transform coefficients and estimation of the degree of sharpness of objects edges in the image. The efficiency of the algorithm is confirmed on images from the datasets PATH-DT-MSU [1] and FocusPath [2].</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768824700026</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Datasets ; Deep learning ; Discrete cosine transform ; Image resolution ; Methods ; Multiscale analysis ; Neural networks ; Operating Systems ; Software Engineering ; Software Engineering/Programming and Operating Systems</subject><ispartof>Programming and computer software, 2024-06, Vol.50 (3), p.224-230</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0361-7688, Programming and Computer Software, 2024, Vol. 50, No. 3, pp. 224–230. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Programmirovanie, 2024, Vol. 50, No. 3.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p184t-3ab585e8953b52a45b512729410b31c65ead8be0aaea599f5929a7bcfeba75ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0361768824700026$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0361768824700026$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nazarenko, G. S.</creatorcontrib><creatorcontrib>Krylov, A. S.</creatorcontrib><title>Neural Network Method for Detecting Blur in Histological Images</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the discrete cosine transform coefficients and estimation of the degree of sharpness of objects edges in the image. The efficiency of the algorithm is confirmed on images from the datasets PATH-DT-MSU [1] and FocusPath [2].</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Discrete cosine transform</subject><subject>Image resolution</subject><subject>Methods</subject><subject>Multiscale analysis</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAzEQhC0EEiHwA-gsUR-s33aFeCdSCAVQn-zLXrhwxMHnE3-fi4JEQUG1xXwzox1CThmcMybkxTMIzYy2lksDAFzvkRHTYAvBNdsno61cbPVDctR1KwAGIOWIXM6xT76lc8xfMb3TR8xvcUHrmOgtZqxys17S67ZPtFnTSdPl2MZlUw2O6YdfYndMDmrfdnjyc8fk9f7u5WZSzJ4epjdXs2LDrMyF8EFZhdYpERT3UgXFuOFOMgiCVVqhX9iA4D165VytHHfehKrG4I2qUIzJ2S53k-Jnj10uV7FP66GyFKC11YoZ9x-lQTNnBorvqG6Thvcw_VIMyu2c5Z85xTdC5WXp</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Nazarenko, G. S.</creator><creator>Krylov, A. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>JQ2</scope></search><sort><creationdate>20240601</creationdate><title>Neural Network Method for Detecting Blur in Histological Images</title><author>Nazarenko, G. S. ; Krylov, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p184t-3ab585e8953b52a45b512729410b31c65ead8be0aaea599f5929a7bcfeba75ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Discrete cosine transform</topic><topic>Image resolution</topic><topic>Methods</topic><topic>Multiscale analysis</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarenko, G. S.</creatorcontrib><creatorcontrib>Krylov, A. S.</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarenko, G. S.</au><au>Krylov, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Method for Detecting Blur in Histological Images</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>50</volume><issue>3</issue><spage>224</spage><epage>230</epage><pages>224-230</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the discrete cosine transform coefficients and estimation of the degree of sharpness of objects edges in the image. The efficiency of the algorithm is confirmed on images from the datasets PATH-DT-MSU [1] and FocusPath [2].</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0361768824700026</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-7688
ispartof Programming and computer software, 2024-06, Vol.50 (3), p.224-230
issn 0361-7688
1608-3261
language eng
recordid cdi_proquest_journals_3066865179
source SpringerNature Journals
subjects Algorithms
Artificial Intelligence
Computer Science
Datasets
Deep learning
Discrete cosine transform
Image resolution
Methods
Multiscale analysis
Neural networks
Operating Systems
Software Engineering
Software Engineering/Programming and Operating Systems
title Neural Network Method for Detecting Blur in Histological Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Method%20for%20Detecting%20Blur%20in%20Histological%20Images&rft.jtitle=Programming%20and%20computer%20software&rft.au=Nazarenko,%20G.%20S.&rft.date=2024-06-01&rft.volume=50&rft.issue=3&rft.spage=224&rft.epage=230&rft.pages=224-230&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768824700026&rft_dat=%3Cproquest_sprin%3E3066865179%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066606197&rft_id=info:pmid/&rfr_iscdi=true