Neural Network Method for Detecting Blur in Histological Images
In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the disc...
Gespeichert in:
Veröffentlicht in: | Programming and computer software 2024-06, Vol.50 (3), p.224-230 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 3 |
container_start_page | 224 |
container_title | Programming and computer software |
container_volume | 50 |
creator | Nazarenko, G. S. Krylov, A. S. |
description | In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the discrete cosine transform coefficients and estimation of the degree of sharpness of objects edges in the image. The efficiency of the algorithm is confirmed on images from the datasets PATH-DT-MSU [1] and FocusPath [2]. |
doi_str_mv | 10.1134/S0361768824700026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3066865179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865179</sourcerecordid><originalsourceid>FETCH-LOGICAL-p184t-3ab585e8953b52a45b512729410b31c65ead8be0aaea599f5929a7bcfeba75ce3</originalsourceid><addsrcrecordid>eNqFkDtPAzEQhC0EEiHwA-gsUR-s33aFeCdSCAVQn-zLXrhwxMHnE3-fi4JEQUG1xXwzox1CThmcMybkxTMIzYy2lksDAFzvkRHTYAvBNdsno61cbPVDctR1KwAGIOWIXM6xT76lc8xfMb3TR8xvcUHrmOgtZqxys17S67ZPtFnTSdPl2MZlUw2O6YdfYndMDmrfdnjyc8fk9f7u5WZSzJ4epjdXs2LDrMyF8EFZhdYpERT3UgXFuOFOMgiCVVqhX9iA4D165VytHHfehKrG4I2qUIzJ2S53k-Jnj10uV7FP66GyFKC11YoZ9x-lQTNnBorvqG6Thvcw_VIMyu2c5Z85xTdC5WXp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066606197</pqid></control><display><type>article</type><title>Neural Network Method for Detecting Blur in Histological Images</title><source>SpringerNature Journals</source><creator>Nazarenko, G. S. ; Krylov, A. S.</creator><creatorcontrib>Nazarenko, G. S. ; Krylov, A. S.</creatorcontrib><description>In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the discrete cosine transform coefficients and estimation of the degree of sharpness of objects edges in the image. The efficiency of the algorithm is confirmed on images from the datasets PATH-DT-MSU [1] and FocusPath [2].</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768824700026</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Datasets ; Deep learning ; Discrete cosine transform ; Image resolution ; Methods ; Multiscale analysis ; Neural networks ; Operating Systems ; Software Engineering ; Software Engineering/Programming and Operating Systems</subject><ispartof>Programming and computer software, 2024-06, Vol.50 (3), p.224-230</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0361-7688, Programming and Computer Software, 2024, Vol. 50, No. 3, pp. 224–230. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Programmirovanie, 2024, Vol. 50, No. 3.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p184t-3ab585e8953b52a45b512729410b31c65ead8be0aaea599f5929a7bcfeba75ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0361768824700026$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0361768824700026$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nazarenko, G. S.</creatorcontrib><creatorcontrib>Krylov, A. S.</creatorcontrib><title>Neural Network Method for Detecting Blur in Histological Images</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the discrete cosine transform coefficients and estimation of the degree of sharpness of objects edges in the image. The efficiency of the algorithm is confirmed on images from the datasets PATH-DT-MSU [1] and FocusPath [2].</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Discrete cosine transform</subject><subject>Image resolution</subject><subject>Methods</subject><subject>Multiscale analysis</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAzEQhC0EEiHwA-gsUR-s33aFeCdSCAVQn-zLXrhwxMHnE3-fi4JEQUG1xXwzox1CThmcMybkxTMIzYy2lksDAFzvkRHTYAvBNdsno61cbPVDctR1KwAGIOWIXM6xT76lc8xfMb3TR8xvcUHrmOgtZqxys17S67ZPtFnTSdPl2MZlUw2O6YdfYndMDmrfdnjyc8fk9f7u5WZSzJ4epjdXs2LDrMyF8EFZhdYpERT3UgXFuOFOMgiCVVqhX9iA4D165VytHHfehKrG4I2qUIzJ2S53k-Jnj10uV7FP66GyFKC11YoZ9x-lQTNnBorvqG6Thvcw_VIMyu2c5Z85xTdC5WXp</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Nazarenko, G. S.</creator><creator>Krylov, A. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>JQ2</scope></search><sort><creationdate>20240601</creationdate><title>Neural Network Method for Detecting Blur in Histological Images</title><author>Nazarenko, G. S. ; Krylov, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p184t-3ab585e8953b52a45b512729410b31c65ead8be0aaea599f5929a7bcfeba75ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Discrete cosine transform</topic><topic>Image resolution</topic><topic>Methods</topic><topic>Multiscale analysis</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarenko, G. S.</creatorcontrib><creatorcontrib>Krylov, A. S.</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarenko, G. S.</au><au>Krylov, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Method for Detecting Blur in Histological Images</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>50</volume><issue>3</issue><spage>224</spage><epage>230</epage><pages>224-230</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>In this paper we consider the problem of detecting blurred regions in high-resolution whole slide histologic images. The proposed method is based on the use of a Fourier neural operator trained on the results of two simultaneously used approaches: blur detection using multiscale analysis of the discrete cosine transform coefficients and estimation of the degree of sharpness of objects edges in the image. The efficiency of the algorithm is confirmed on images from the datasets PATH-DT-MSU [1] and FocusPath [2].</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0361768824700026</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-7688 |
ispartof | Programming and computer software, 2024-06, Vol.50 (3), p.224-230 |
issn | 0361-7688 1608-3261 |
language | eng |
recordid | cdi_proquest_journals_3066865179 |
source | SpringerNature Journals |
subjects | Algorithms Artificial Intelligence Computer Science Datasets Deep learning Discrete cosine transform Image resolution Methods Multiscale analysis Neural networks Operating Systems Software Engineering Software Engineering/Programming and Operating Systems |
title | Neural Network Method for Detecting Blur in Histological Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Method%20for%20Detecting%20Blur%20in%20Histological%20Images&rft.jtitle=Programming%20and%20computer%20software&rft.au=Nazarenko,%20G.%20S.&rft.date=2024-06-01&rft.volume=50&rft.issue=3&rft.spage=224&rft.epage=230&rft.pages=224-230&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768824700026&rft_dat=%3Cproquest_sprin%3E3066865179%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066606197&rft_id=info:pmid/&rfr_iscdi=true |