Small Cap Square Function Estimates
We introduce and prove small cap square function estimates for the unit parabola and the truncated light cone. More precisely, we study inequalities of the form ‖ f ‖ p ≤ C α , p ( R ) ‖ ( ∑ γ ∈ Γ α ( R - 1 ) | f γ | 2 ) 1 / 2 ‖ p , where Γ α ( R - 1 ) is the set of small caps of width R - α . We fi...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2024-06, Vol.30 (3), Article 36 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | The Journal of fourier analysis and applications |
container_volume | 30 |
creator | Gan, Shengwen |
description | We introduce and prove small cap square function estimates for the unit parabola and the truncated light cone. More precisely, we study inequalities of the form
‖
f
‖
p
≤
C
α
,
p
(
R
)
‖
(
∑
γ
∈
Γ
α
(
R
-
1
)
|
f
γ
|
2
)
1
/
2
‖
p
,
where
Γ
α
(
R
-
1
)
is the set of small caps of width
R
-
α
. We find sharp upper and lower bounds of the constant
C
α
,
p
(
R
)
. |
doi_str_mv | 10.1007/s00041-024-10095-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066865178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7d9ce92d70de2ae273256406ec40aedc405983665060be684ba66f529a2267cc3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKfCnqM3SXPTPErZnDDwYfocsjSVja7tkhbmtzdawTdf7h8459zLj5B7Bg8MQD1GAMgZBZ7TtGtJzxdkxqRgVBaSXaYZUKcZ9TW5ifEAwJlQYkYW26Ntmqy0fbY9jTb4bDW2bth3bbaMw_5oBx9vyVVtm-jvfvucvK-Wb-Wabl6fX8qnDXUcYKCq0s5rXimoPLeeK8El5oDe5WB9larUhUCUgLDzWOQ7i1hLri3nqJwTc7KYcvvQnUYfB3PoxtCmk0YAYoGSqSKp-KRyoYsx-Nr0If0ZPg0D8w3DTDBMgmF-YJhzMonJFJO4_fDhL_of1xdgLF_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066865178</pqid></control><display><type>article</type><title>Small Cap Square Function Estimates</title><source>SpringerNature Journals</source><creator>Gan, Shengwen</creator><creatorcontrib>Gan, Shengwen</creatorcontrib><description>We introduce and prove small cap square function estimates for the unit parabola and the truncated light cone. More precisely, we study inequalities of the form
‖
f
‖
p
≤
C
α
,
p
(
R
)
‖
(
∑
γ
∈
Γ
α
(
R
-
1
)
|
f
γ
|
2
)
1
/
2
‖
p
,
where
Γ
α
(
R
-
1
)
is the set of small caps of width
R
-
α
. We find sharp upper and lower bounds of the constant
C
α
,
p
(
R
)
.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-024-10095-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Estimates ; Fourier Analysis ; Lower bounds ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2024-06, Vol.30 (3), Article 36</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7d9ce92d70de2ae273256406ec40aedc405983665060be684ba66f529a2267cc3</cites><orcidid>0000-0002-9028-8137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-024-10095-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-024-10095-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Gan, Shengwen</creatorcontrib><title>Small Cap Square Function Estimates</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>We introduce and prove small cap square function estimates for the unit parabola and the truncated light cone. More precisely, we study inequalities of the form
‖
f
‖
p
≤
C
α
,
p
(
R
)
‖
(
∑
γ
∈
Γ
α
(
R
-
1
)
|
f
γ
|
2
)
1
/
2
‖
p
,
where
Γ
α
(
R
-
1
)
is the set of small caps of width
R
-
α
. We find sharp upper and lower bounds of the constant
C
α
,
p
(
R
)
.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Estimates</subject><subject>Fourier Analysis</subject><subject>Lower bounds</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdfwKfCnqM3SXPTPErZnDDwYfocsjSVja7tkhbmtzdawTdf7h8459zLj5B7Bg8MQD1GAMgZBZ7TtGtJzxdkxqRgVBaSXaYZUKcZ9TW5ifEAwJlQYkYW26Ntmqy0fbY9jTb4bDW2bth3bbaMw_5oBx9vyVVtm-jvfvucvK-Wb-Wabl6fX8qnDXUcYKCq0s5rXimoPLeeK8El5oDe5WB9larUhUCUgLDzWOQ7i1hLri3nqJwTc7KYcvvQnUYfB3PoxtCmk0YAYoGSqSKp-KRyoYsx-Nr0If0ZPg0D8w3DTDBMgmF-YJhzMonJFJO4_fDhL_of1xdgLF_8</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gan, Shengwen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9028-8137</orcidid></search><sort><creationdate>20240601</creationdate><title>Small Cap Square Function Estimates</title><author>Gan, Shengwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7d9ce92d70de2ae273256406ec40aedc405983665060be684ba66f529a2267cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Estimates</topic><topic>Fourier Analysis</topic><topic>Lower bounds</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Shengwen</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Shengwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Cap Square Function Estimates</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><artnum>36</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We introduce and prove small cap square function estimates for the unit parabola and the truncated light cone. More precisely, we study inequalities of the form
‖
f
‖
p
≤
C
α
,
p
(
R
)
‖
(
∑
γ
∈
Γ
α
(
R
-
1
)
|
f
γ
|
2
)
1
/
2
‖
p
,
where
Γ
α
(
R
-
1
)
is the set of small caps of width
R
-
α
. We find sharp upper and lower bounds of the constant
C
α
,
p
(
R
)
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-024-10095-x</doi><orcidid>https://orcid.org/0000-0002-9028-8137</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-5869 |
ispartof | The Journal of fourier analysis and applications, 2024-06, Vol.30 (3), Article 36 |
issn | 1069-5869 1531-5851 |
language | eng |
recordid | cdi_proquest_journals_3066865178 |
source | SpringerNature Journals |
subjects | Abstract Harmonic Analysis Approximations and Expansions Estimates Fourier Analysis Lower bounds Mathematical Methods in Physics Mathematics Mathematics and Statistics Partial Differential Equations Signal,Image and Speech Processing |
title | Small Cap Square Function Estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T13%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Cap%20Square%20Function%20Estimates&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Gan,%20Shengwen&rft.date=2024-06-01&rft.volume=30&rft.issue=3&rft.artnum=36&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-024-10095-x&rft_dat=%3Cproquest_cross%3E3066865178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066865178&rft_id=info:pmid/&rfr_iscdi=true |