Intelligent regional subsurface prediction based on limited borehole data and interpretability stacking technique of ensemble learning
This study introduces an intelligent method for regional subsurface prediction using a Stacking ensemble learning approach, which incorporates K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and Xgboost as base classifiers, with Logistic Reg...
Gespeichert in:
Veröffentlicht in: | Bulletin of engineering geology and the environment 2024-07, Vol.83 (7), p.272, Article 272 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 272 |
container_title | Bulletin of engineering geology and the environment |
container_volume | 83 |
creator | Bai, Jun Wang, Sheng Xu, Qiang Zhu, Junsheng Li, Zhaoqi Lai, Kun Liu, Xingyi Chen, Zongjie |
description | This study introduces an intelligent method for regional subsurface prediction using a Stacking ensemble learning approach, which incorporates K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and Xgboost as base classifiers, with Logistic Regression (LR) serving as the meta-classifier. Leveraging data from 1119 boreholes in Zigong City, China, this method achieves a prediction accuracy of 93%, and notably improves the prediction of weak layers, with accuracy rates ranging from 71.4% to 81.5%. This enhancement is particularly significant in areas with a random distribution of excavation and backfill. Furthermore, this study employs the SHAP method (SHapley Additive explanations) to interpret the Stacking ensemble learning model, revealing that the outputs of the base classifiers enhance the feature set for the meta-classifier, effectively addressing the insensitivity of the spatial coordinates x, y, and z as input features for lithology prediction. The findings demonstrate that the expansion of effective feature dimensions is key to the superior performance of the Stacking ensemble learning method in regional subsurface lithology prediction. |
doi_str_mv | 10.1007/s10064-024-03758-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066864937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066598283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-519dad108be1a9d7ef265bbdec46f7a632fbb001ac9b93ed3fc9812cc7af5cd53</originalsourceid><addsrcrecordid>eNqFkctOAyEYhSdGE2v1BVyRuB7lUmaGpWm8NGniRteEy09LnTIV6GJewOcWrdGdLoATON8Jf05VXRJ8TTBub1LZm1mNaVms5V09HlUTMmO8Fpy1xz-aitPqLKUNxoR3lEyq90XI0Pd-BSGjCCs_BNWjtNdpH50ygHYRrDe53COtElhURO-3PhephwjroQdkVVZIBYt8SYsFyUr73ucRpazMqw8rlMGsg3_bAxocgpBgqwvYg4qhPJ9XJ071CS6-z2n1cn_3PH-sl08Pi_ntsjaUdrnmRFhlCe40ECVsC442XGsLZta4VjWMOq3LbMoILRhY5ozoCDWmVY4by9m0ujrk7uJQ_pKy3Az7WEZOkuGm6ZqZYO1_Li462rHiogeXiUNKEZzcRb9VcZQEy89W5KEVWVqRX63IsUDsAKViDiuIv9F_UB9wxJR_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066598283</pqid></control><display><type>article</type><title>Intelligent regional subsurface prediction based on limited borehole data and interpretability stacking technique of ensemble learning</title><source>SpringerLink (Online service)</source><creator>Bai, Jun ; Wang, Sheng ; Xu, Qiang ; Zhu, Junsheng ; Li, Zhaoqi ; Lai, Kun ; Liu, Xingyi ; Chen, Zongjie</creator><creatorcontrib>Bai, Jun ; Wang, Sheng ; Xu, Qiang ; Zhu, Junsheng ; Li, Zhaoqi ; Lai, Kun ; Liu, Xingyi ; Chen, Zongjie</creatorcontrib><description>This study introduces an intelligent method for regional subsurface prediction using a Stacking ensemble learning approach, which incorporates K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and Xgboost as base classifiers, with Logistic Regression (LR) serving as the meta-classifier. Leveraging data from 1119 boreholes in Zigong City, China, this method achieves a prediction accuracy of 93%, and notably improves the prediction of weak layers, with accuracy rates ranging from 71.4% to 81.5%. This enhancement is particularly significant in areas with a random distribution of excavation and backfill. Furthermore, this study employs the SHAP method (SHapley Additive explanations) to interpret the Stacking ensemble learning model, revealing that the outputs of the base classifiers enhance the feature set for the meta-classifier, effectively addressing the insensitivity of the spatial coordinates x, y, and z as input features for lithology prediction. The findings demonstrate that the expansion of effective feature dimensions is key to the superior performance of the Stacking ensemble learning method in regional subsurface lithology prediction.</description><identifier>ISSN: 1435-9529</identifier><identifier>EISSN: 1435-9537</identifier><identifier>DOI: 10.1007/s10064-024-03758-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Boreholes ; Classifiers ; Datasets ; Decision trees ; Dredging ; Earth and Environmental Science ; Earth Sciences ; Ensemble learning ; Excavation ; Foundations ; Geoecology/Natural Processes ; Geoengineering ; Geology ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulics ; Learning ; Lithology ; Machine learning ; Nature Conservation ; Original Paper ; Predictions ; Regression analysis</subject><ispartof>Bulletin of engineering geology and the environment, 2024-07, Vol.83 (7), p.272, Article 272</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-519dad108be1a9d7ef265bbdec46f7a632fbb001ac9b93ed3fc9812cc7af5cd53</cites><orcidid>0000-0003-1479-0309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10064-024-03758-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10064-024-03758-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bai, Jun</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Zhu, Junsheng</creatorcontrib><creatorcontrib>Li, Zhaoqi</creatorcontrib><creatorcontrib>Lai, Kun</creatorcontrib><creatorcontrib>Liu, Xingyi</creatorcontrib><creatorcontrib>Chen, Zongjie</creatorcontrib><title>Intelligent regional subsurface prediction based on limited borehole data and interpretability stacking technique of ensemble learning</title><title>Bulletin of engineering geology and the environment</title><addtitle>Bull Eng Geol Environ</addtitle><description>This study introduces an intelligent method for regional subsurface prediction using a Stacking ensemble learning approach, which incorporates K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and Xgboost as base classifiers, with Logistic Regression (LR) serving as the meta-classifier. Leveraging data from 1119 boreholes in Zigong City, China, this method achieves a prediction accuracy of 93%, and notably improves the prediction of weak layers, with accuracy rates ranging from 71.4% to 81.5%. This enhancement is particularly significant in areas with a random distribution of excavation and backfill. Furthermore, this study employs the SHAP method (SHapley Additive explanations) to interpret the Stacking ensemble learning model, revealing that the outputs of the base classifiers enhance the feature set for the meta-classifier, effectively addressing the insensitivity of the spatial coordinates x, y, and z as input features for lithology prediction. The findings demonstrate that the expansion of effective feature dimensions is key to the superior performance of the Stacking ensemble learning method in regional subsurface lithology prediction.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Boreholes</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Dredging</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ensemble learning</subject><subject>Excavation</subject><subject>Foundations</subject><subject>Geoecology/Natural Processes</subject><subject>Geoengineering</subject><subject>Geology</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Learning</subject><subject>Lithology</subject><subject>Machine learning</subject><subject>Nature Conservation</subject><subject>Original Paper</subject><subject>Predictions</subject><subject>Regression analysis</subject><issn>1435-9529</issn><issn>1435-9537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctOAyEYhSdGE2v1BVyRuB7lUmaGpWm8NGniRteEy09LnTIV6GJewOcWrdGdLoATON8Jf05VXRJ8TTBub1LZm1mNaVms5V09HlUTMmO8Fpy1xz-aitPqLKUNxoR3lEyq90XI0Pd-BSGjCCs_BNWjtNdpH50ygHYRrDe53COtElhURO-3PhephwjroQdkVVZIBYt8SYsFyUr73ucRpazMqw8rlMGsg3_bAxocgpBgqwvYg4qhPJ9XJ071CS6-z2n1cn_3PH-sl08Pi_ntsjaUdrnmRFhlCe40ECVsC442XGsLZta4VjWMOq3LbMoILRhY5ozoCDWmVY4by9m0ujrk7uJQ_pKy3Az7WEZOkuGm6ZqZYO1_Li462rHiogeXiUNKEZzcRb9VcZQEy89W5KEVWVqRX63IsUDsAKViDiuIv9F_UB9wxJR_</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Bai, Jun</creator><creator>Wang, Sheng</creator><creator>Xu, Qiang</creator><creator>Zhu, Junsheng</creator><creator>Li, Zhaoqi</creator><creator>Lai, Kun</creator><creator>Liu, Xingyi</creator><creator>Chen, Zongjie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1479-0309</orcidid></search><sort><creationdate>20240701</creationdate><title>Intelligent regional subsurface prediction based on limited borehole data and interpretability stacking technique of ensemble learning</title><author>Bai, Jun ; Wang, Sheng ; Xu, Qiang ; Zhu, Junsheng ; Li, Zhaoqi ; Lai, Kun ; Liu, Xingyi ; Chen, Zongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-519dad108be1a9d7ef265bbdec46f7a632fbb001ac9b93ed3fc9812cc7af5cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Boreholes</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Dredging</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ensemble learning</topic><topic>Excavation</topic><topic>Foundations</topic><topic>Geoecology/Natural Processes</topic><topic>Geoengineering</topic><topic>Geology</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Learning</topic><topic>Lithology</topic><topic>Machine learning</topic><topic>Nature Conservation</topic><topic>Original Paper</topic><topic>Predictions</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Jun</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Zhu, Junsheng</creatorcontrib><creatorcontrib>Li, Zhaoqi</creatorcontrib><creatorcontrib>Lai, Kun</creatorcontrib><creatorcontrib>Liu, Xingyi</creatorcontrib><creatorcontrib>Chen, Zongjie</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of engineering geology and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Jun</au><au>Wang, Sheng</au><au>Xu, Qiang</au><au>Zhu, Junsheng</au><au>Li, Zhaoqi</au><au>Lai, Kun</au><au>Liu, Xingyi</au><au>Chen, Zongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent regional subsurface prediction based on limited borehole data and interpretability stacking technique of ensemble learning</atitle><jtitle>Bulletin of engineering geology and the environment</jtitle><stitle>Bull Eng Geol Environ</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>83</volume><issue>7</issue><spage>272</spage><pages>272-</pages><artnum>272</artnum><issn>1435-9529</issn><eissn>1435-9537</eissn><abstract>This study introduces an intelligent method for regional subsurface prediction using a Stacking ensemble learning approach, which incorporates K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and Xgboost as base classifiers, with Logistic Regression (LR) serving as the meta-classifier. Leveraging data from 1119 boreholes in Zigong City, China, this method achieves a prediction accuracy of 93%, and notably improves the prediction of weak layers, with accuracy rates ranging from 71.4% to 81.5%. This enhancement is particularly significant in areas with a random distribution of excavation and backfill. Furthermore, this study employs the SHAP method (SHapley Additive explanations) to interpret the Stacking ensemble learning model, revealing that the outputs of the base classifiers enhance the feature set for the meta-classifier, effectively addressing the insensitivity of the spatial coordinates x, y, and z as input features for lithology prediction. The findings demonstrate that the expansion of effective feature dimensions is key to the superior performance of the Stacking ensemble learning method in regional subsurface lithology prediction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10064-024-03758-y</doi><orcidid>https://orcid.org/0000-0003-1479-0309</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9529 |
ispartof | Bulletin of engineering geology and the environment, 2024-07, Vol.83 (7), p.272, Article 272 |
issn | 1435-9529 1435-9537 |
language | eng |
recordid | cdi_proquest_journals_3066864937 |
source | SpringerLink (Online service) |
subjects | Accuracy Algorithms Artificial intelligence Boreholes Classifiers Datasets Decision trees Dredging Earth and Environmental Science Earth Sciences Ensemble learning Excavation Foundations Geoecology/Natural Processes Geoengineering Geology Geotechnical Engineering & Applied Earth Sciences Hydraulics Learning Lithology Machine learning Nature Conservation Original Paper Predictions Regression analysis |
title | Intelligent regional subsurface prediction based on limited borehole data and interpretability stacking technique of ensemble learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20regional%20subsurface%20prediction%20based%20on%20limited%20borehole%20data%20and%20interpretability%20stacking%20technique%20of%20ensemble%20learning&rft.jtitle=Bulletin%20of%20engineering%20geology%20and%20the%20environment&rft.au=Bai,%20Jun&rft.date=2024-07-01&rft.volume=83&rft.issue=7&rft.spage=272&rft.pages=272-&rft.artnum=272&rft.issn=1435-9529&rft.eissn=1435-9537&rft_id=info:doi/10.1007/s10064-024-03758-y&rft_dat=%3Cproquest_cross%3E3066598283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066598283&rft_id=info:pmid/&rfr_iscdi=true |