Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration
To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composi...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-06, Vol.34 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Song, Zelong Yu, Haichao Hou, Linhao Dong, Yuan Hu, Miaomiao Wei, Pengfei Wang, Wenchao Qian, Dingfei Cao, Shiqi Zheng, Zhirong Xu, Zhaoning Zhao, Bo Huang, Yiqian Jing, Wei Zhang, Xuesong |
description | To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composite scaffold integrates a self‐assembled small intestinal submucosa (SIS) hydrogel with pre‐adsorbed hydroxyapatite (HA) particles and tannic acid (TA), demonstrating distinctive mechanical resilience and porous structures, suitable for filling irregular cavities and facilitating cell infiltration, while exhibiting a broad‐spectrum of antibacterial efficacy and robust ROS‐scavenging capacity for tissue regeneration. RNA‐sequencing analysis indicates the underlying mechanism revealing the disrupting of arginine and alanine amino acid biosynthesis. Furthermore, the composite scaffold demonstrates excellent cytocompatibility, with cell viability exceeding 70%. Remarkably, it demonstrates exceptional anti‐inflammatory performances (≈5‐fold to the control). In an infected bone defect model, the composite scaffold facilitates superior bone regeneration, being ≈5‐fold greater than the control, while maintaining a conducive environment for cell adhesion and infiltration without scaffold collapse. This multifunctional composite scaffold emerges as a promising candidate for combating infections in bone regeneration, showcasing its potential in addressing complex bone‐related challenges.
In this study, a mechanics‐resilient bone scaffolding materials are fabricated using small intestinal submucosa (SIS) based collagen and hydroxylapatite particles coated with tannic acid, which facilitates filling in the irregular bone defects and withstands external force to maintain porous structures for bone regeneration. |
doi_str_mv | 10.1002/adfm.202315382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066621343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066621343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-9e1abe1b43fd3d80dbc69a7a094e69cd11883ab7400040b5903889e3bf86092a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFavngOeWyebdT-OtVottBRaBW_LbDJbU9qkJtHSmz_Bkz_QX-KWih49zTA8zzvwRtE5hy4HiC9R1atuDLHgVyKPD6IWT3naERDnh787fzqOTrxfAPAsE0kr-hyTfEajpf96_5iS10tNJrD73uVsOGtO1-hJsb5dra3XgdhMYl3bpfJso8Mzm052UHN8IzPXZs7QKHaNMpDT-JPoAzaJfVyj1GHLgmU9pRx5z4ampgZtDGuITWlOhhwGbc1pdFTj0tPZz2xHj4Pbh_59ZzS5G_Z7o44UPIs7BXGsiFeJqJVQOahKpgVmCEVCaSEV53kusMoSAEiguipA5HlBoqrzFIoYRTu62OeunX15JR_KhX11pnlZCkjTNOYiEQ3V3VPSWe8d1eXa6RW6bcmh3HVf7rovf7tvhGIvbPSStv_QZe9mMP5zvwEDF410</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066621343</pqid></control><display><type>article</type><title>Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration</title><source>Access via Wiley Online Library</source><creator>Song, Zelong ; Yu, Haichao ; Hou, Linhao ; Dong, Yuan ; Hu, Miaomiao ; Wei, Pengfei ; Wang, Wenchao ; Qian, Dingfei ; Cao, Shiqi ; Zheng, Zhirong ; Xu, Zhaoning ; Zhao, Bo ; Huang, Yiqian ; Jing, Wei ; Zhang, Xuesong</creator><creatorcontrib>Song, Zelong ; Yu, Haichao ; Hou, Linhao ; Dong, Yuan ; Hu, Miaomiao ; Wei, Pengfei ; Wang, Wenchao ; Qian, Dingfei ; Cao, Shiqi ; Zheng, Zhirong ; Xu, Zhaoning ; Zhao, Bo ; Huang, Yiqian ; Jing, Wei ; Zhang, Xuesong</creatorcontrib><description>To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composite scaffold integrates a self‐assembled small intestinal submucosa (SIS) hydrogel with pre‐adsorbed hydroxyapatite (HA) particles and tannic acid (TA), demonstrating distinctive mechanical resilience and porous structures, suitable for filling irregular cavities and facilitating cell infiltration, while exhibiting a broad‐spectrum of antibacterial efficacy and robust ROS‐scavenging capacity for tissue regeneration. RNA‐sequencing analysis indicates the underlying mechanism revealing the disrupting of arginine and alanine amino acid biosynthesis. Furthermore, the composite scaffold demonstrates excellent cytocompatibility, with cell viability exceeding 70%. Remarkably, it demonstrates exceptional anti‐inflammatory performances (≈5‐fold to the control). In an infected bone defect model, the composite scaffold facilitates superior bone regeneration, being ≈5‐fold greater than the control, while maintaining a conducive environment for cell adhesion and infiltration without scaffold collapse. This multifunctional composite scaffold emerges as a promising candidate for combating infections in bone regeneration, showcasing its potential in addressing complex bone‐related challenges.
In this study, a mechanics‐resilient bone scaffolding materials are fabricated using small intestinal submucosa (SIS) based collagen and hydroxylapatite particles coated with tannic acid, which facilitates filling in the irregular bone defects and withstands external force to maintain porous structures for bone regeneration.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202315382</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Alanine ; Amino acids ; anti‐bacterial ; Bacteria ; Biocompatibility ; Biosynthesis ; bone regeneration ; Cell adhesion ; Defects ; Gene sequencing ; HA/SIS composite scaffold ; Hydroxyapatite ; Infiltration ; mechanical‐resilient ; Regeneration (physiology) ; Resilience ; ROS‐scavenging ; Scaffolds ; Scavenging ; Self-assembly ; Tannic acid ; Tissue engineering</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (24), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-9e1abe1b43fd3d80dbc69a7a094e69cd11883ab7400040b5903889e3bf86092a3</citedby><cites>FETCH-LOGICAL-c3172-9e1abe1b43fd3d80dbc69a7a094e69cd11883ab7400040b5903889e3bf86092a3</cites><orcidid>0000-0002-1934-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202315382$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202315382$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids></links><search><creatorcontrib>Song, Zelong</creatorcontrib><creatorcontrib>Yu, Haichao</creatorcontrib><creatorcontrib>Hou, Linhao</creatorcontrib><creatorcontrib>Dong, Yuan</creatorcontrib><creatorcontrib>Hu, Miaomiao</creatorcontrib><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Wang, Wenchao</creatorcontrib><creatorcontrib>Qian, Dingfei</creatorcontrib><creatorcontrib>Cao, Shiqi</creatorcontrib><creatorcontrib>Zheng, Zhirong</creatorcontrib><creatorcontrib>Xu, Zhaoning</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Huang, Yiqian</creatorcontrib><creatorcontrib>Jing, Wei</creatorcontrib><creatorcontrib>Zhang, Xuesong</creatorcontrib><title>Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration</title><title>Advanced functional materials</title><description>To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composite scaffold integrates a self‐assembled small intestinal submucosa (SIS) hydrogel with pre‐adsorbed hydroxyapatite (HA) particles and tannic acid (TA), demonstrating distinctive mechanical resilience and porous structures, suitable for filling irregular cavities and facilitating cell infiltration, while exhibiting a broad‐spectrum of antibacterial efficacy and robust ROS‐scavenging capacity for tissue regeneration. RNA‐sequencing analysis indicates the underlying mechanism revealing the disrupting of arginine and alanine amino acid biosynthesis. Furthermore, the composite scaffold demonstrates excellent cytocompatibility, with cell viability exceeding 70%. Remarkably, it demonstrates exceptional anti‐inflammatory performances (≈5‐fold to the control). In an infected bone defect model, the composite scaffold facilitates superior bone regeneration, being ≈5‐fold greater than the control, while maintaining a conducive environment for cell adhesion and infiltration without scaffold collapse. This multifunctional composite scaffold emerges as a promising candidate for combating infections in bone regeneration, showcasing its potential in addressing complex bone‐related challenges.
In this study, a mechanics‐resilient bone scaffolding materials are fabricated using small intestinal submucosa (SIS) based collagen and hydroxylapatite particles coated with tannic acid, which facilitates filling in the irregular bone defects and withstands external force to maintain porous structures for bone regeneration.</description><subject>Alanine</subject><subject>Amino acids</subject><subject>anti‐bacterial</subject><subject>Bacteria</subject><subject>Biocompatibility</subject><subject>Biosynthesis</subject><subject>bone regeneration</subject><subject>Cell adhesion</subject><subject>Defects</subject><subject>Gene sequencing</subject><subject>HA/SIS composite scaffold</subject><subject>Hydroxyapatite</subject><subject>Infiltration</subject><subject>mechanical‐resilient</subject><subject>Regeneration (physiology)</subject><subject>Resilience</subject><subject>ROS‐scavenging</subject><subject>Scaffolds</subject><subject>Scavenging</subject><subject>Self-assembly</subject><subject>Tannic acid</subject><subject>Tissue engineering</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsFavngOeWyebdT-OtVottBRaBW_LbDJbU9qkJtHSmz_Bkz_QX-KWih49zTA8zzvwRtE5hy4HiC9R1atuDLHgVyKPD6IWT3naERDnh787fzqOTrxfAPAsE0kr-hyTfEajpf96_5iS10tNJrD73uVsOGtO1-hJsb5dra3XgdhMYl3bpfJso8Mzm052UHN8IzPXZs7QKHaNMpDT-JPoAzaJfVyj1GHLgmU9pRx5z4ampgZtDGuITWlOhhwGbc1pdFTj0tPZz2xHj4Pbh_59ZzS5G_Z7o44UPIs7BXGsiFeJqJVQOahKpgVmCEVCaSEV53kusMoSAEiguipA5HlBoqrzFIoYRTu62OeunX15JR_KhX11pnlZCkjTNOYiEQ3V3VPSWe8d1eXa6RW6bcmh3HVf7rovf7tvhGIvbPSStv_QZe9mMP5zvwEDF410</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Song, Zelong</creator><creator>Yu, Haichao</creator><creator>Hou, Linhao</creator><creator>Dong, Yuan</creator><creator>Hu, Miaomiao</creator><creator>Wei, Pengfei</creator><creator>Wang, Wenchao</creator><creator>Qian, Dingfei</creator><creator>Cao, Shiqi</creator><creator>Zheng, Zhirong</creator><creator>Xu, Zhaoning</creator><creator>Zhao, Bo</creator><creator>Huang, Yiqian</creator><creator>Jing, Wei</creator><creator>Zhang, Xuesong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1934-5717</orcidid></search><sort><creationdate>20240601</creationdate><title>Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration</title><author>Song, Zelong ; Yu, Haichao ; Hou, Linhao ; Dong, Yuan ; Hu, Miaomiao ; Wei, Pengfei ; Wang, Wenchao ; Qian, Dingfei ; Cao, Shiqi ; Zheng, Zhirong ; Xu, Zhaoning ; Zhao, Bo ; Huang, Yiqian ; Jing, Wei ; Zhang, Xuesong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-9e1abe1b43fd3d80dbc69a7a094e69cd11883ab7400040b5903889e3bf86092a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alanine</topic><topic>Amino acids</topic><topic>anti‐bacterial</topic><topic>Bacteria</topic><topic>Biocompatibility</topic><topic>Biosynthesis</topic><topic>bone regeneration</topic><topic>Cell adhesion</topic><topic>Defects</topic><topic>Gene sequencing</topic><topic>HA/SIS composite scaffold</topic><topic>Hydroxyapatite</topic><topic>Infiltration</topic><topic>mechanical‐resilient</topic><topic>Regeneration (physiology)</topic><topic>Resilience</topic><topic>ROS‐scavenging</topic><topic>Scaffolds</topic><topic>Scavenging</topic><topic>Self-assembly</topic><topic>Tannic acid</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zelong</creatorcontrib><creatorcontrib>Yu, Haichao</creatorcontrib><creatorcontrib>Hou, Linhao</creatorcontrib><creatorcontrib>Dong, Yuan</creatorcontrib><creatorcontrib>Hu, Miaomiao</creatorcontrib><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Wang, Wenchao</creatorcontrib><creatorcontrib>Qian, Dingfei</creatorcontrib><creatorcontrib>Cao, Shiqi</creatorcontrib><creatorcontrib>Zheng, Zhirong</creatorcontrib><creatorcontrib>Xu, Zhaoning</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Huang, Yiqian</creatorcontrib><creatorcontrib>Jing, Wei</creatorcontrib><creatorcontrib>Zhang, Xuesong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zelong</au><au>Yu, Haichao</au><au>Hou, Linhao</au><au>Dong, Yuan</au><au>Hu, Miaomiao</au><au>Wei, Pengfei</au><au>Wang, Wenchao</au><au>Qian, Dingfei</au><au>Cao, Shiqi</au><au>Zheng, Zhirong</au><au>Xu, Zhaoning</au><au>Zhao, Bo</au><au>Huang, Yiqian</au><au>Jing, Wei</au><au>Zhang, Xuesong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composite scaffold integrates a self‐assembled small intestinal submucosa (SIS) hydrogel with pre‐adsorbed hydroxyapatite (HA) particles and tannic acid (TA), demonstrating distinctive mechanical resilience and porous structures, suitable for filling irregular cavities and facilitating cell infiltration, while exhibiting a broad‐spectrum of antibacterial efficacy and robust ROS‐scavenging capacity for tissue regeneration. RNA‐sequencing analysis indicates the underlying mechanism revealing the disrupting of arginine and alanine amino acid biosynthesis. Furthermore, the composite scaffold demonstrates excellent cytocompatibility, with cell viability exceeding 70%. Remarkably, it demonstrates exceptional anti‐inflammatory performances (≈5‐fold to the control). In an infected bone defect model, the composite scaffold facilitates superior bone regeneration, being ≈5‐fold greater than the control, while maintaining a conducive environment for cell adhesion and infiltration without scaffold collapse. This multifunctional composite scaffold emerges as a promising candidate for combating infections in bone regeneration, showcasing its potential in addressing complex bone‐related challenges.
In this study, a mechanics‐resilient bone scaffolding materials are fabricated using small intestinal submucosa (SIS) based collagen and hydroxylapatite particles coated with tannic acid, which facilitates filling in the irregular bone defects and withstands external force to maintain porous structures for bone regeneration.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202315382</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1934-5717</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-06, Vol.34 (24), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3066621343 |
source | Access via Wiley Online Library |
subjects | Alanine Amino acids anti‐bacterial Bacteria Biocompatibility Biosynthesis bone regeneration Cell adhesion Defects Gene sequencing HA/SIS composite scaffold Hydroxyapatite Infiltration mechanical‐resilient Regeneration (physiology) Resilience ROS‐scavenging Scaffolds Scavenging Self-assembly Tannic acid Tissue engineering |
title | Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%E2%80%90Resilient%20HA/SIS%E2%80%90Based%20Composite%20Scaffolds%20with%20ROS%E2%80%90Scavenging%20and%20Bacteria%E2%80%90Resistant%20Capacity%20to%20Address%20Infected%20Bone%20Regeneration&rft.jtitle=Advanced%20functional%20materials&rft.au=Song,%20Zelong&rft.date=2024-06-01&rft.volume=34&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202315382&rft_dat=%3Cproquest_cross%3E3066621343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066621343&rft_id=info:pmid/&rfr_iscdi=true |