Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration

To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-06, Vol.34 (24), p.n/a
Hauptverfasser: Song, Zelong, Yu, Haichao, Hou, Linhao, Dong, Yuan, Hu, Miaomiao, Wei, Pengfei, Wang, Wenchao, Qian, Dingfei, Cao, Shiqi, Zheng, Zhirong, Xu, Zhaoning, Zhao, Bo, Huang, Yiqian, Jing, Wei, Zhang, Xuesong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 34
creator Song, Zelong
Yu, Haichao
Hou, Linhao
Dong, Yuan
Hu, Miaomiao
Wei, Pengfei
Wang, Wenchao
Qian, Dingfei
Cao, Shiqi
Zheng, Zhirong
Xu, Zhaoning
Zhao, Bo
Huang, Yiqian
Jing, Wei
Zhang, Xuesong
description To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composite scaffold integrates a self‐assembled small intestinal submucosa (SIS) hydrogel with pre‐adsorbed hydroxyapatite (HA) particles and tannic acid (TA), demonstrating distinctive mechanical resilience and porous structures, suitable for filling irregular cavities and facilitating cell infiltration, while exhibiting a broad‐spectrum of antibacterial efficacy and robust ROS‐scavenging capacity for tissue regeneration. RNA‐sequencing analysis indicates the underlying mechanism revealing the disrupting of arginine and alanine amino acid biosynthesis. Furthermore, the composite scaffold demonstrates excellent cytocompatibility, with cell viability exceeding 70%. Remarkably, it demonstrates exceptional anti‐inflammatory performances (≈5‐fold to the control). In an infected bone defect model, the composite scaffold facilitates superior bone regeneration, being ≈5‐fold greater than the control, while maintaining a conducive environment for cell adhesion and infiltration without scaffold collapse. This multifunctional composite scaffold emerges as a promising candidate for combating infections in bone regeneration, showcasing its potential in addressing complex bone‐related challenges. In this study, a mechanics‐resilient bone scaffolding materials are fabricated using small intestinal submucosa (SIS) based collagen and hydroxylapatite particles coated with tannic acid, which facilitates filling in the irregular bone defects and withstands external force to maintain porous structures for bone regeneration.
doi_str_mv 10.1002/adfm.202315382
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066621343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066621343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-9e1abe1b43fd3d80dbc69a7a094e69cd11883ab7400040b5903889e3bf86092a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFavngOeWyebdT-OtVottBRaBW_LbDJbU9qkJtHSmz_Bkz_QX-KWih49zTA8zzvwRtE5hy4HiC9R1atuDLHgVyKPD6IWT3naERDnh787fzqOTrxfAPAsE0kr-hyTfEajpf96_5iS10tNJrD73uVsOGtO1-hJsb5dra3XgdhMYl3bpfJso8Mzm052UHN8IzPXZs7QKHaNMpDT-JPoAzaJfVyj1GHLgmU9pRx5z4ampgZtDGuITWlOhhwGbc1pdFTj0tPZz2xHj4Pbh_59ZzS5G_Z7o44UPIs7BXGsiFeJqJVQOahKpgVmCEVCaSEV53kusMoSAEiguipA5HlBoqrzFIoYRTu62OeunX15JR_KhX11pnlZCkjTNOYiEQ3V3VPSWe8d1eXa6RW6bcmh3HVf7rovf7tvhGIvbPSStv_QZe9mMP5zvwEDF410</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066621343</pqid></control><display><type>article</type><title>Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration</title><source>Access via Wiley Online Library</source><creator>Song, Zelong ; Yu, Haichao ; Hou, Linhao ; Dong, Yuan ; Hu, Miaomiao ; Wei, Pengfei ; Wang, Wenchao ; Qian, Dingfei ; Cao, Shiqi ; Zheng, Zhirong ; Xu, Zhaoning ; Zhao, Bo ; Huang, Yiqian ; Jing, Wei ; Zhang, Xuesong</creator><creatorcontrib>Song, Zelong ; Yu, Haichao ; Hou, Linhao ; Dong, Yuan ; Hu, Miaomiao ; Wei, Pengfei ; Wang, Wenchao ; Qian, Dingfei ; Cao, Shiqi ; Zheng, Zhirong ; Xu, Zhaoning ; Zhao, Bo ; Huang, Yiqian ; Jing, Wei ; Zhang, Xuesong</creatorcontrib><description>To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composite scaffold integrates a self‐assembled small intestinal submucosa (SIS) hydrogel with pre‐adsorbed hydroxyapatite (HA) particles and tannic acid (TA), demonstrating distinctive mechanical resilience and porous structures, suitable for filling irregular cavities and facilitating cell infiltration, while exhibiting a broad‐spectrum of antibacterial efficacy and robust ROS‐scavenging capacity for tissue regeneration. RNA‐sequencing analysis indicates the underlying mechanism revealing the disrupting of arginine and alanine amino acid biosynthesis. Furthermore, the composite scaffold demonstrates excellent cytocompatibility, with cell viability exceeding 70%. Remarkably, it demonstrates exceptional anti‐inflammatory performances (≈5‐fold to the control). In an infected bone defect model, the composite scaffold facilitates superior bone regeneration, being ≈5‐fold greater than the control, while maintaining a conducive environment for cell adhesion and infiltration without scaffold collapse. This multifunctional composite scaffold emerges as a promising candidate for combating infections in bone regeneration, showcasing its potential in addressing complex bone‐related challenges. In this study, a mechanics‐resilient bone scaffolding materials are fabricated using small intestinal submucosa (SIS) based collagen and hydroxylapatite particles coated with tannic acid, which facilitates filling in the irregular bone defects and withstands external force to maintain porous structures for bone regeneration.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202315382</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Alanine ; Amino acids ; anti‐bacterial ; Bacteria ; Biocompatibility ; Biosynthesis ; bone regeneration ; Cell adhesion ; Defects ; Gene sequencing ; HA/SIS composite scaffold ; Hydroxyapatite ; Infiltration ; mechanical‐resilient ; Regeneration (physiology) ; Resilience ; ROS‐scavenging ; Scaffolds ; Scavenging ; Self-assembly ; Tannic acid ; Tissue engineering</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (24), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-9e1abe1b43fd3d80dbc69a7a094e69cd11883ab7400040b5903889e3bf86092a3</citedby><cites>FETCH-LOGICAL-c3172-9e1abe1b43fd3d80dbc69a7a094e69cd11883ab7400040b5903889e3bf86092a3</cites><orcidid>0000-0002-1934-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202315382$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202315382$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids></links><search><creatorcontrib>Song, Zelong</creatorcontrib><creatorcontrib>Yu, Haichao</creatorcontrib><creatorcontrib>Hou, Linhao</creatorcontrib><creatorcontrib>Dong, Yuan</creatorcontrib><creatorcontrib>Hu, Miaomiao</creatorcontrib><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Wang, Wenchao</creatorcontrib><creatorcontrib>Qian, Dingfei</creatorcontrib><creatorcontrib>Cao, Shiqi</creatorcontrib><creatorcontrib>Zheng, Zhirong</creatorcontrib><creatorcontrib>Xu, Zhaoning</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Huang, Yiqian</creatorcontrib><creatorcontrib>Jing, Wei</creatorcontrib><creatorcontrib>Zhang, Xuesong</creatorcontrib><title>Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration</title><title>Advanced functional materials</title><description>To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composite scaffold integrates a self‐assembled small intestinal submucosa (SIS) hydrogel with pre‐adsorbed hydroxyapatite (HA) particles and tannic acid (TA), demonstrating distinctive mechanical resilience and porous structures, suitable for filling irregular cavities and facilitating cell infiltration, while exhibiting a broad‐spectrum of antibacterial efficacy and robust ROS‐scavenging capacity for tissue regeneration. RNA‐sequencing analysis indicates the underlying mechanism revealing the disrupting of arginine and alanine amino acid biosynthesis. Furthermore, the composite scaffold demonstrates excellent cytocompatibility, with cell viability exceeding 70%. Remarkably, it demonstrates exceptional anti‐inflammatory performances (≈5‐fold to the control). In an infected bone defect model, the composite scaffold facilitates superior bone regeneration, being ≈5‐fold greater than the control, while maintaining a conducive environment for cell adhesion and infiltration without scaffold collapse. This multifunctional composite scaffold emerges as a promising candidate for combating infections in bone regeneration, showcasing its potential in addressing complex bone‐related challenges. In this study, a mechanics‐resilient bone scaffolding materials are fabricated using small intestinal submucosa (SIS) based collagen and hydroxylapatite particles coated with tannic acid, which facilitates filling in the irregular bone defects and withstands external force to maintain porous structures for bone regeneration.</description><subject>Alanine</subject><subject>Amino acids</subject><subject>anti‐bacterial</subject><subject>Bacteria</subject><subject>Biocompatibility</subject><subject>Biosynthesis</subject><subject>bone regeneration</subject><subject>Cell adhesion</subject><subject>Defects</subject><subject>Gene sequencing</subject><subject>HA/SIS composite scaffold</subject><subject>Hydroxyapatite</subject><subject>Infiltration</subject><subject>mechanical‐resilient</subject><subject>Regeneration (physiology)</subject><subject>Resilience</subject><subject>ROS‐scavenging</subject><subject>Scaffolds</subject><subject>Scavenging</subject><subject>Self-assembly</subject><subject>Tannic acid</subject><subject>Tissue engineering</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsFavngOeWyebdT-OtVottBRaBW_LbDJbU9qkJtHSmz_Bkz_QX-KWih49zTA8zzvwRtE5hy4HiC9R1atuDLHgVyKPD6IWT3naERDnh787fzqOTrxfAPAsE0kr-hyTfEajpf96_5iS10tNJrD73uVsOGtO1-hJsb5dra3XgdhMYl3bpfJso8Mzm052UHN8IzPXZs7QKHaNMpDT-JPoAzaJfVyj1GHLgmU9pRx5z4ampgZtDGuITWlOhhwGbc1pdFTj0tPZz2xHj4Pbh_59ZzS5G_Z7o44UPIs7BXGsiFeJqJVQOahKpgVmCEVCaSEV53kusMoSAEiguipA5HlBoqrzFIoYRTu62OeunX15JR_KhX11pnlZCkjTNOYiEQ3V3VPSWe8d1eXa6RW6bcmh3HVf7rovf7tvhGIvbPSStv_QZe9mMP5zvwEDF410</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Song, Zelong</creator><creator>Yu, Haichao</creator><creator>Hou, Linhao</creator><creator>Dong, Yuan</creator><creator>Hu, Miaomiao</creator><creator>Wei, Pengfei</creator><creator>Wang, Wenchao</creator><creator>Qian, Dingfei</creator><creator>Cao, Shiqi</creator><creator>Zheng, Zhirong</creator><creator>Xu, Zhaoning</creator><creator>Zhao, Bo</creator><creator>Huang, Yiqian</creator><creator>Jing, Wei</creator><creator>Zhang, Xuesong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1934-5717</orcidid></search><sort><creationdate>20240601</creationdate><title>Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration</title><author>Song, Zelong ; Yu, Haichao ; Hou, Linhao ; Dong, Yuan ; Hu, Miaomiao ; Wei, Pengfei ; Wang, Wenchao ; Qian, Dingfei ; Cao, Shiqi ; Zheng, Zhirong ; Xu, Zhaoning ; Zhao, Bo ; Huang, Yiqian ; Jing, Wei ; Zhang, Xuesong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-9e1abe1b43fd3d80dbc69a7a094e69cd11883ab7400040b5903889e3bf86092a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alanine</topic><topic>Amino acids</topic><topic>anti‐bacterial</topic><topic>Bacteria</topic><topic>Biocompatibility</topic><topic>Biosynthesis</topic><topic>bone regeneration</topic><topic>Cell adhesion</topic><topic>Defects</topic><topic>Gene sequencing</topic><topic>HA/SIS composite scaffold</topic><topic>Hydroxyapatite</topic><topic>Infiltration</topic><topic>mechanical‐resilient</topic><topic>Regeneration (physiology)</topic><topic>Resilience</topic><topic>ROS‐scavenging</topic><topic>Scaffolds</topic><topic>Scavenging</topic><topic>Self-assembly</topic><topic>Tannic acid</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zelong</creatorcontrib><creatorcontrib>Yu, Haichao</creatorcontrib><creatorcontrib>Hou, Linhao</creatorcontrib><creatorcontrib>Dong, Yuan</creatorcontrib><creatorcontrib>Hu, Miaomiao</creatorcontrib><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Wang, Wenchao</creatorcontrib><creatorcontrib>Qian, Dingfei</creatorcontrib><creatorcontrib>Cao, Shiqi</creatorcontrib><creatorcontrib>Zheng, Zhirong</creatorcontrib><creatorcontrib>Xu, Zhaoning</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Huang, Yiqian</creatorcontrib><creatorcontrib>Jing, Wei</creatorcontrib><creatorcontrib>Zhang, Xuesong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zelong</au><au>Yu, Haichao</au><au>Hou, Linhao</au><au>Dong, Yuan</au><au>Hu, Miaomiao</au><au>Wei, Pengfei</au><au>Wang, Wenchao</au><au>Qian, Dingfei</au><au>Cao, Shiqi</au><au>Zheng, Zhirong</au><au>Xu, Zhaoning</au><au>Zhao, Bo</au><au>Huang, Yiqian</au><au>Jing, Wei</au><au>Zhang, Xuesong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>To address and regenerate infected bone defects complicated by issues such as inflammation and bone resorption, and to promote bone regeneration, this study focuses on the development of a composite scaffold with reactive oxygen species (ROS)‐scavenging and bacteria‐resistant properties. The composite scaffold integrates a self‐assembled small intestinal submucosa (SIS) hydrogel with pre‐adsorbed hydroxyapatite (HA) particles and tannic acid (TA), demonstrating distinctive mechanical resilience and porous structures, suitable for filling irregular cavities and facilitating cell infiltration, while exhibiting a broad‐spectrum of antibacterial efficacy and robust ROS‐scavenging capacity for tissue regeneration. RNA‐sequencing analysis indicates the underlying mechanism revealing the disrupting of arginine and alanine amino acid biosynthesis. Furthermore, the composite scaffold demonstrates excellent cytocompatibility, with cell viability exceeding 70%. Remarkably, it demonstrates exceptional anti‐inflammatory performances (≈5‐fold to the control). In an infected bone defect model, the composite scaffold facilitates superior bone regeneration, being ≈5‐fold greater than the control, while maintaining a conducive environment for cell adhesion and infiltration without scaffold collapse. This multifunctional composite scaffold emerges as a promising candidate for combating infections in bone regeneration, showcasing its potential in addressing complex bone‐related challenges. In this study, a mechanics‐resilient bone scaffolding materials are fabricated using small intestinal submucosa (SIS) based collagen and hydroxylapatite particles coated with tannic acid, which facilitates filling in the irregular bone defects and withstands external force to maintain porous structures for bone regeneration.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202315382</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1934-5717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-06, Vol.34 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3066621343
source Access via Wiley Online Library
subjects Alanine
Amino acids
anti‐bacterial
Bacteria
Biocompatibility
Biosynthesis
bone regeneration
Cell adhesion
Defects
Gene sequencing
HA/SIS composite scaffold
Hydroxyapatite
Infiltration
mechanical‐resilient
Regeneration (physiology)
Resilience
ROS‐scavenging
Scaffolds
Scavenging
Self-assembly
Tannic acid
Tissue engineering
title Mechanics‐Resilient HA/SIS‐Based Composite Scaffolds with ROS‐Scavenging and Bacteria‐Resistant Capacity to Address Infected Bone Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%E2%80%90Resilient%20HA/SIS%E2%80%90Based%20Composite%20Scaffolds%20with%20ROS%E2%80%90Scavenging%20and%20Bacteria%E2%80%90Resistant%20Capacity%20to%20Address%20Infected%20Bone%20Regeneration&rft.jtitle=Advanced%20functional%20materials&rft.au=Song,%20Zelong&rft.date=2024-06-01&rft.volume=34&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202315382&rft_dat=%3Cproquest_cross%3E3066621343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066621343&rft_id=info:pmid/&rfr_iscdi=true