Engineering Copper‐Based Covalent Organic Framework Microenvironments to Enable Efficient CO2 Electroreduction with Tunable Ethylene/Methane Switch

A microenvironment engineering strategy has been developed to switch the CO2 electroreduction reaction (CO2RR) selectivity from methane (CH4) to ethylene (C2H4) by adjusting the coordination microstructures of trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). When Cu sites are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-06, Vol.34 (24), p.n/a
Hauptverfasser: Chen, Qian, Si, Duan‐Hui, Wu, Qiu‐Jin, Cao, Rong, Huang, Yuan‐Biao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 34
creator Chen, Qian
Si, Duan‐Hui
Wu, Qiu‐Jin
Cao, Rong
Huang, Yuan‐Biao
description A microenvironment engineering strategy has been developed to switch the CO2 electroreduction reaction (CO2RR) selectivity from methane (CH4) to ethylene (C2H4) by adjusting the coordination microstructures of trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). When Cu sites are oriented to channels in Cu‐PyCA‐MCOF, methane is the main product. Conversely, when trinuclear copper sites are coordinated with OH− and H2O molecules in Cu‐PyCAOH‐MCOF nanosheets, the main product switches from CH4 to C2H4 with 50.5% selectivity and 200.2 mA cm− partial current density at −1.2 V (vs RHE). This happens because CO2 molecules can only contact active sites perpendicular to the trinuclear copper cluster plane in Cu‐PyCAOH‐MCOF nanosheets, where the Cu─Cu distance between them is 3.2 Å, favoring the efficient conversion of CO2 to C2H4 through the C─C coupling reaction. Operando infrared spectroscopy, in situ X‐ray absorption near‐edge structure spectra, and DFT calculations reveal that changing the coordination environments of MCOFs significantly stabilizes key intermediates and reduces the energies of the CO2RR. This work offers an effective strategy for enhancing CO2RR performance toward C2H4 products by tuning the microenvironments of copper‐based electrocatalysts. A microenvironment engineering strategy switches the selectivity of CO2 electroreduction reaction (CO2RR) from methane (CH4) to ethylene (C2H4) by tuning the coordination microstructures of a trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). In Cu‐PyCAOH‐MCOF, oxygen species coordination can alter charge density distribution, lower *COOH formation energy, and influence CO2 attack direction, promoting efficient C─C coupling and CO2 conversion to C2H4.
doi_str_mv 10.1002/adfm.202315368
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3066621333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066621333</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-1aa61b12eaf371c110e4645a9ac0f5fe07edff14b3bbdf6c161dcbf4ff64f5c63</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqWwMltiTmvHidOOpaSA1KoDRWKLHOfcuCR2cJJW3XgEFl6QJyFVq95y9-v-u1_6ELqnZEAJ8YciU-XAJz6jIeOjC9SjnHKPEX90eZ7pxzW6qesNITSKWNBDv7FZawPgtFnjqa0qcH_fP4-ihqyTW1GAafDSrYXREs-cKGFn3SdeaOksmK121pSdpcaNxbERaQE4VkpLfbibLn0cFyAbZx1krWy0NXinmxyv2pO3yfddBAwX0OTCAH7r1jK_RVdKFDXcnXofvc_i1fTFmy-fX6eTuVf5jI08KgSnKfVBKBZRSSmBgAehGAtJVKiARJApRYOUpWmmuOwgZDJVgVI8UKHkrI8ejn8rZ79aqJtkY1tnusiEEc65T1lXfTQ-una6gH1SOV0Kt08oSQ7ckwP35Mw9mTzNFmfF_gFBZn46</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066621333</pqid></control><display><type>article</type><title>Engineering Copper‐Based Covalent Organic Framework Microenvironments to Enable Efficient CO2 Electroreduction with Tunable Ethylene/Methane Switch</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Qian ; Si, Duan‐Hui ; Wu, Qiu‐Jin ; Cao, Rong ; Huang, Yuan‐Biao</creator><creatorcontrib>Chen, Qian ; Si, Duan‐Hui ; Wu, Qiu‐Jin ; Cao, Rong ; Huang, Yuan‐Biao</creatorcontrib><description>A microenvironment engineering strategy has been developed to switch the CO2 electroreduction reaction (CO2RR) selectivity from methane (CH4) to ethylene (C2H4) by adjusting the coordination microstructures of trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). When Cu sites are oriented to channels in Cu‐PyCA‐MCOF, methane is the main product. Conversely, when trinuclear copper sites are coordinated with OH− and H2O molecules in Cu‐PyCAOH‐MCOF nanosheets, the main product switches from CH4 to C2H4 with 50.5% selectivity and 200.2 mA cm− partial current density at −1.2 V (vs RHE). This happens because CO2 molecules can only contact active sites perpendicular to the trinuclear copper cluster plane in Cu‐PyCAOH‐MCOF nanosheets, where the Cu─Cu distance between them is 3.2 Å, favoring the efficient conversion of CO2 to C2H4 through the C─C coupling reaction. Operando infrared spectroscopy, in situ X‐ray absorption near‐edge structure spectra, and DFT calculations reveal that changing the coordination environments of MCOFs significantly stabilizes key intermediates and reduces the energies of the CO2RR. This work offers an effective strategy for enhancing CO2RR performance toward C2H4 products by tuning the microenvironments of copper‐based electrocatalysts. A microenvironment engineering strategy switches the selectivity of CO2 electroreduction reaction (CO2RR) from methane (CH4) to ethylene (C2H4) by tuning the coordination microstructures of a trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). In Cu‐PyCAOH‐MCOF, oxygen species coordination can alter charge density distribution, lower *COOH formation energy, and influence CO2 attack direction, promoting efficient C─C coupling and CO2 conversion to C2H4.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202315368</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Chemical reactions ; Clusters ; CO2 electrocatalysis ; Coordination ; Copper ; Copper converters ; covalent organic framework ; Electrocatalysts ; Electrowinning ; Ethylene ; metal‐organic framework ; Methane ; Nanosheets ; Spectrum analysis</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (24), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4680-2976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202315368$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202315368$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Si, Duan‐Hui</creatorcontrib><creatorcontrib>Wu, Qiu‐Jin</creatorcontrib><creatorcontrib>Cao, Rong</creatorcontrib><creatorcontrib>Huang, Yuan‐Biao</creatorcontrib><title>Engineering Copper‐Based Covalent Organic Framework Microenvironments to Enable Efficient CO2 Electroreduction with Tunable Ethylene/Methane Switch</title><title>Advanced functional materials</title><description>A microenvironment engineering strategy has been developed to switch the CO2 electroreduction reaction (CO2RR) selectivity from methane (CH4) to ethylene (C2H4) by adjusting the coordination microstructures of trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). When Cu sites are oriented to channels in Cu‐PyCA‐MCOF, methane is the main product. Conversely, when trinuclear copper sites are coordinated with OH− and H2O molecules in Cu‐PyCAOH‐MCOF nanosheets, the main product switches from CH4 to C2H4 with 50.5% selectivity and 200.2 mA cm− partial current density at −1.2 V (vs RHE). This happens because CO2 molecules can only contact active sites perpendicular to the trinuclear copper cluster plane in Cu‐PyCAOH‐MCOF nanosheets, where the Cu─Cu distance between them is 3.2 Å, favoring the efficient conversion of CO2 to C2H4 through the C─C coupling reaction. Operando infrared spectroscopy, in situ X‐ray absorption near‐edge structure spectra, and DFT calculations reveal that changing the coordination environments of MCOFs significantly stabilizes key intermediates and reduces the energies of the CO2RR. This work offers an effective strategy for enhancing CO2RR performance toward C2H4 products by tuning the microenvironments of copper‐based electrocatalysts. A microenvironment engineering strategy switches the selectivity of CO2 electroreduction reaction (CO2RR) from methane (CH4) to ethylene (C2H4) by tuning the coordination microstructures of a trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). In Cu‐PyCAOH‐MCOF, oxygen species coordination can alter charge density distribution, lower *COOH formation energy, and influence CO2 attack direction, promoting efficient C─C coupling and CO2 conversion to C2H4.</description><subject>Carbon dioxide</subject><subject>Chemical reactions</subject><subject>Clusters</subject><subject>CO2 electrocatalysis</subject><subject>Coordination</subject><subject>Copper</subject><subject>Copper converters</subject><subject>covalent organic framework</subject><subject>Electrocatalysts</subject><subject>Electrowinning</subject><subject>Ethylene</subject><subject>metal‐organic framework</subject><subject>Methane</subject><subject>Nanosheets</subject><subject>Spectrum analysis</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQhi0EEqWwMltiTmvHidOOpaSA1KoDRWKLHOfcuCR2cJJW3XgEFl6QJyFVq95y9-v-u1_6ELqnZEAJ8YciU-XAJz6jIeOjC9SjnHKPEX90eZ7pxzW6qesNITSKWNBDv7FZawPgtFnjqa0qcH_fP4-ihqyTW1GAafDSrYXREs-cKGFn3SdeaOksmK121pSdpcaNxbERaQE4VkpLfbibLn0cFyAbZx1krWy0NXinmxyv2pO3yfddBAwX0OTCAH7r1jK_RVdKFDXcnXofvc_i1fTFmy-fX6eTuVf5jI08KgSnKfVBKBZRSSmBgAehGAtJVKiARJApRYOUpWmmuOwgZDJVgVI8UKHkrI8ejn8rZ79aqJtkY1tnusiEEc65T1lXfTQ-una6gH1SOV0Kt08oSQ7ckwP35Mw9mTzNFmfF_gFBZn46</recordid><startdate>20240612</startdate><enddate>20240612</enddate><creator>Chen, Qian</creator><creator>Si, Duan‐Hui</creator><creator>Wu, Qiu‐Jin</creator><creator>Cao, Rong</creator><creator>Huang, Yuan‐Biao</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4680-2976</orcidid></search><sort><creationdate>20240612</creationdate><title>Engineering Copper‐Based Covalent Organic Framework Microenvironments to Enable Efficient CO2 Electroreduction with Tunable Ethylene/Methane Switch</title><author>Chen, Qian ; Si, Duan‐Hui ; Wu, Qiu‐Jin ; Cao, Rong ; Huang, Yuan‐Biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-1aa61b12eaf371c110e4645a9ac0f5fe07edff14b3bbdf6c161dcbf4ff64f5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Chemical reactions</topic><topic>Clusters</topic><topic>CO2 electrocatalysis</topic><topic>Coordination</topic><topic>Copper</topic><topic>Copper converters</topic><topic>covalent organic framework</topic><topic>Electrocatalysts</topic><topic>Electrowinning</topic><topic>Ethylene</topic><topic>metal‐organic framework</topic><topic>Methane</topic><topic>Nanosheets</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Si, Duan‐Hui</creatorcontrib><creatorcontrib>Wu, Qiu‐Jin</creatorcontrib><creatorcontrib>Cao, Rong</creatorcontrib><creatorcontrib>Huang, Yuan‐Biao</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qian</au><au>Si, Duan‐Hui</au><au>Wu, Qiu‐Jin</au><au>Cao, Rong</au><au>Huang, Yuan‐Biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Copper‐Based Covalent Organic Framework Microenvironments to Enable Efficient CO2 Electroreduction with Tunable Ethylene/Methane Switch</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-12</date><risdate>2024</risdate><volume>34</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A microenvironment engineering strategy has been developed to switch the CO2 electroreduction reaction (CO2RR) selectivity from methane (CH4) to ethylene (C2H4) by adjusting the coordination microstructures of trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). When Cu sites are oriented to channels in Cu‐PyCA‐MCOF, methane is the main product. Conversely, when trinuclear copper sites are coordinated with OH− and H2O molecules in Cu‐PyCAOH‐MCOF nanosheets, the main product switches from CH4 to C2H4 with 50.5% selectivity and 200.2 mA cm− partial current density at −1.2 V (vs RHE). This happens because CO2 molecules can only contact active sites perpendicular to the trinuclear copper cluster plane in Cu‐PyCAOH‐MCOF nanosheets, where the Cu─Cu distance between them is 3.2 Å, favoring the efficient conversion of CO2 to C2H4 through the C─C coupling reaction. Operando infrared spectroscopy, in situ X‐ray absorption near‐edge structure spectra, and DFT calculations reveal that changing the coordination environments of MCOFs significantly stabilizes key intermediates and reduces the energies of the CO2RR. This work offers an effective strategy for enhancing CO2RR performance toward C2H4 products by tuning the microenvironments of copper‐based electrocatalysts. A microenvironment engineering strategy switches the selectivity of CO2 electroreduction reaction (CO2RR) from methane (CH4) to ethylene (C2H4) by tuning the coordination microstructures of a trinuclear copper cluster‐based metal‐covalent organic framework (MCOF). In Cu‐PyCAOH‐MCOF, oxygen species coordination can alter charge density distribution, lower *COOH formation energy, and influence CO2 attack direction, promoting efficient C─C coupling and CO2 conversion to C2H4.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202315368</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4680-2976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-06, Vol.34 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3066621333
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Chemical reactions
Clusters
CO2 electrocatalysis
Coordination
Copper
Copper converters
covalent organic framework
Electrocatalysts
Electrowinning
Ethylene
metal‐organic framework
Methane
Nanosheets
Spectrum analysis
title Engineering Copper‐Based Covalent Organic Framework Microenvironments to Enable Efficient CO2 Electroreduction with Tunable Ethylene/Methane Switch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Copper%E2%80%90Based%20Covalent%20Organic%20Framework%20Microenvironments%20to%20Enable%20Efficient%20CO2%20Electroreduction%20with%20Tunable%20Ethylene/Methane%20Switch&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Qian&rft.date=2024-06-12&rft.volume=34&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202315368&rft_dat=%3Cproquest_wiley%3E3066621333%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066621333&rft_id=info:pmid/&rfr_iscdi=true