Semiconductive Biomaterials for Pathological Bone Repair and Regeneration

Bone implant biomaterials are among the most used materials for clinical application. Despite significant advances in biocompatibility and osteoconductivity, conventional biomaterials lack the ability to cope with the pathological microenvironment (inflammation, infection, residual tumors, etc.) dur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-06, Vol.34 (24), p.n/a
Hauptverfasser: Fan, Youzhun, Ran, Heying, Wang, Zhengao, Ning, Chengyun, Zhai, Jinxia, Yu, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 34
creator Fan, Youzhun
Ran, Heying
Wang, Zhengao
Ning, Chengyun
Zhai, Jinxia
Yu, Peng
description Bone implant biomaterials are among the most used materials for clinical application. Despite significant advances in biocompatibility and osteoconductivity, conventional biomaterials lack the ability to cope with the pathological microenvironment (inflammation, infection, residual tumors, etc.) during bone repair. Semiconductor implant materials have unique electrical, optical, ultrasound, and thermal response properties, which facilitate non‐invasively and controllably dynamic repair of pathological bone defects. In this review, the design and synthesis of a new generation of semiconductor‐driven bone implant materials are summarized, the mechanism of action of semiconductive biomaterials' functional interfaces and the dynamic repair process of bone tissues are discussed, and new strategies for the problems encountered during clinical osseointegration is provided. Finally, the review outlooks the future of functional semiconductive implants for bone defect repair. This review summarizes recent advances in the functionally responsive semiconductor‐driven bone implant materials, which can not only preserve unique intrinsic physical and chemical properties to regulate cellular phenotype but also generate spatial‐temporally controllable external physical field‐responsive signals, such as heat, electricity, and reactive oxygen species, to dynamically and precisely regulate bone repair in pathological condition.
doi_str_mv 10.1002/adfm.202308310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066621320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066621320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-c35ca9d3cea06a617e998718e70396ee38a8385e8715427af4153d5df9f6b7453</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKtXzwueWyfJbrJ7bKuthYriB3gLMTupKbubmt0q_e9NqdSjl5nH8H7z4BFySWFIAdi1Lm09ZMA45JzCEelRQcWAA8uPD5q-nZKztl0BUCl52iPzZ6yd8U25MZ37wmTsfK07DE5XbWJ9SB519-Erv3RGV8nYN5g84Vq7kOimjHKJDQbdOd-ckxMbIbz43X3yOr19mdwNFg-z-WS0GBhOJcSZGV2U3KAGoQWVWBS5pDlK4IVA5LnOeZ5hvGUpk9qmNONlVtrCineZZrxPrvZ_18F_brDt1MpvQhMjFQchBKOcQXQN9y4TfNsGtGodXK3DVlFQu7rUri51qCsCxR74dhVu_3Gr0c30_o_9AchRbdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066621320</pqid></control><display><type>article</type><title>Semiconductive Biomaterials for Pathological Bone Repair and Regeneration</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fan, Youzhun ; Ran, Heying ; Wang, Zhengao ; Ning, Chengyun ; Zhai, Jinxia ; Yu, Peng</creator><creatorcontrib>Fan, Youzhun ; Ran, Heying ; Wang, Zhengao ; Ning, Chengyun ; Zhai, Jinxia ; Yu, Peng</creatorcontrib><description>Bone implant biomaterials are among the most used materials for clinical application. Despite significant advances in biocompatibility and osteoconductivity, conventional biomaterials lack the ability to cope with the pathological microenvironment (inflammation, infection, residual tumors, etc.) during bone repair. Semiconductor implant materials have unique electrical, optical, ultrasound, and thermal response properties, which facilitate non‐invasively and controllably dynamic repair of pathological bone defects. In this review, the design and synthesis of a new generation of semiconductor‐driven bone implant materials are summarized, the mechanism of action of semiconductive biomaterials' functional interfaces and the dynamic repair process of bone tissues are discussed, and new strategies for the problems encountered during clinical osseointegration is provided. Finally, the review outlooks the future of functional semiconductive implants for bone defect repair. This review summarizes recent advances in the functionally responsive semiconductor‐driven bone implant materials, which can not only preserve unique intrinsic physical and chemical properties to regulate cellular phenotype but also generate spatial‐temporally controllable external physical field‐responsive signals, such as heat, electricity, and reactive oxygen species, to dynamically and precisely regulate bone repair in pathological condition.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202308310</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>antibacterial ; anti‐tumor ; Biocompatibility ; Biomedical materials ; bone implants ; Defects ; Optical properties ; osseointegration ; semiconductive biomaterials ; Surgical implants ; Thermal response</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (24), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-c35ca9d3cea06a617e998718e70396ee38a8385e8715427af4153d5df9f6b7453</citedby><cites>FETCH-LOGICAL-c3170-c35ca9d3cea06a617e998718e70396ee38a8385e8715427af4153d5df9f6b7453</cites><orcidid>0000-0002-2253-7373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202308310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202308310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Fan, Youzhun</creatorcontrib><creatorcontrib>Ran, Heying</creatorcontrib><creatorcontrib>Wang, Zhengao</creatorcontrib><creatorcontrib>Ning, Chengyun</creatorcontrib><creatorcontrib>Zhai, Jinxia</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><title>Semiconductive Biomaterials for Pathological Bone Repair and Regeneration</title><title>Advanced functional materials</title><description>Bone implant biomaterials are among the most used materials for clinical application. Despite significant advances in biocompatibility and osteoconductivity, conventional biomaterials lack the ability to cope with the pathological microenvironment (inflammation, infection, residual tumors, etc.) during bone repair. Semiconductor implant materials have unique electrical, optical, ultrasound, and thermal response properties, which facilitate non‐invasively and controllably dynamic repair of pathological bone defects. In this review, the design and synthesis of a new generation of semiconductor‐driven bone implant materials are summarized, the mechanism of action of semiconductive biomaterials' functional interfaces and the dynamic repair process of bone tissues are discussed, and new strategies for the problems encountered during clinical osseointegration is provided. Finally, the review outlooks the future of functional semiconductive implants for bone defect repair. This review summarizes recent advances in the functionally responsive semiconductor‐driven bone implant materials, which can not only preserve unique intrinsic physical and chemical properties to regulate cellular phenotype but also generate spatial‐temporally controllable external physical field‐responsive signals, such as heat, electricity, and reactive oxygen species, to dynamically and precisely regulate bone repair in pathological condition.</description><subject>antibacterial</subject><subject>anti‐tumor</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>bone implants</subject><subject>Defects</subject><subject>Optical properties</subject><subject>osseointegration</subject><subject>semiconductive biomaterials</subject><subject>Surgical implants</subject><subject>Thermal response</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKtXzwueWyfJbrJ7bKuthYriB3gLMTupKbubmt0q_e9NqdSjl5nH8H7z4BFySWFIAdi1Lm09ZMA45JzCEelRQcWAA8uPD5q-nZKztl0BUCl52iPzZ6yd8U25MZ37wmTsfK07DE5XbWJ9SB519-Erv3RGV8nYN5g84Vq7kOimjHKJDQbdOd-ckxMbIbz43X3yOr19mdwNFg-z-WS0GBhOJcSZGV2U3KAGoQWVWBS5pDlK4IVA5LnOeZ5hvGUpk9qmNONlVtrCineZZrxPrvZ_18F_brDt1MpvQhMjFQchBKOcQXQN9y4TfNsGtGodXK3DVlFQu7rUri51qCsCxR74dhVu_3Gr0c30_o_9AchRbdo</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Fan, Youzhun</creator><creator>Ran, Heying</creator><creator>Wang, Zhengao</creator><creator>Ning, Chengyun</creator><creator>Zhai, Jinxia</creator><creator>Yu, Peng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2253-7373</orcidid></search><sort><creationdate>20240601</creationdate><title>Semiconductive Biomaterials for Pathological Bone Repair and Regeneration</title><author>Fan, Youzhun ; Ran, Heying ; Wang, Zhengao ; Ning, Chengyun ; Zhai, Jinxia ; Yu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-c35ca9d3cea06a617e998718e70396ee38a8385e8715427af4153d5df9f6b7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>antibacterial</topic><topic>anti‐tumor</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>bone implants</topic><topic>Defects</topic><topic>Optical properties</topic><topic>osseointegration</topic><topic>semiconductive biomaterials</topic><topic>Surgical implants</topic><topic>Thermal response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Youzhun</creatorcontrib><creatorcontrib>Ran, Heying</creatorcontrib><creatorcontrib>Wang, Zhengao</creatorcontrib><creatorcontrib>Ning, Chengyun</creatorcontrib><creatorcontrib>Zhai, Jinxia</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Youzhun</au><au>Ran, Heying</au><au>Wang, Zhengao</au><au>Ning, Chengyun</au><au>Zhai, Jinxia</au><au>Yu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductive Biomaterials for Pathological Bone Repair and Regeneration</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Bone implant biomaterials are among the most used materials for clinical application. Despite significant advances in biocompatibility and osteoconductivity, conventional biomaterials lack the ability to cope with the pathological microenvironment (inflammation, infection, residual tumors, etc.) during bone repair. Semiconductor implant materials have unique electrical, optical, ultrasound, and thermal response properties, which facilitate non‐invasively and controllably dynamic repair of pathological bone defects. In this review, the design and synthesis of a new generation of semiconductor‐driven bone implant materials are summarized, the mechanism of action of semiconductive biomaterials' functional interfaces and the dynamic repair process of bone tissues are discussed, and new strategies for the problems encountered during clinical osseointegration is provided. Finally, the review outlooks the future of functional semiconductive implants for bone defect repair. This review summarizes recent advances in the functionally responsive semiconductor‐driven bone implant materials, which can not only preserve unique intrinsic physical and chemical properties to regulate cellular phenotype but also generate spatial‐temporally controllable external physical field‐responsive signals, such as heat, electricity, and reactive oxygen species, to dynamically and precisely regulate bone repair in pathological condition.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202308310</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2253-7373</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-06, Vol.34 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3066621320
source Wiley Online Library Journals Frontfile Complete
subjects antibacterial
anti‐tumor
Biocompatibility
Biomedical materials
bone implants
Defects
Optical properties
osseointegration
semiconductive biomaterials
Surgical implants
Thermal response
title Semiconductive Biomaterials for Pathological Bone Repair and Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductive%20Biomaterials%20for%20Pathological%20Bone%20Repair%20and%20Regeneration&rft.jtitle=Advanced%20functional%20materials&rft.au=Fan,%20Youzhun&rft.date=2024-06-01&rft.volume=34&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202308310&rft_dat=%3Cproquest_cross%3E3066621320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066621320&rft_id=info:pmid/&rfr_iscdi=true