Insight into the Physical Properties of the Chalcogenide XZrS3 (X = Ca, Ba) Perovskites: A First-Principles Computation
This study investigates the structural, mechanical, optical, thermal, and electronic properties of the ionic semiconducting materials XZrS 3 (X = Ca, Ba) within the framework of density functional theory (DFT). Here, the elastic constants, modulus (bulk, shear, Young's), ratios (Pugh, Poisson)...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2024-07, Vol.53 (7), p.3775-3791 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3791 |
---|---|
container_issue | 7 |
container_start_page | 3775 |
container_title | Journal of electronic materials |
container_volume | 53 |
creator | Rahman, Md. Zillur Hasan, Sayed Sahriar Hasan, Md. Zahid Rasheduzzaman, Md Rahman, Md. Atikur Ali, Md. Mozahar Hossain, Aslam Khokan, Rashel Mohammad Hossain, Md. Mukter Mukhtar, Nurhakimah Mohd Islam, Md. Ariful |
description | This study investigates the structural, mechanical, optical, thermal, and electronic properties of the ionic semiconducting materials XZrS
3
(X = Ca, Ba) within the framework of density functional theory (DFT). Here, the elastic constants, modulus (bulk, shear, Young's), ratios (Pugh, Poisson) and elastic anisotropy for XZrS
3
(X = Ca, Ba) are studied. Furthermore, the electronic, optical, and thermal properties for XZrS
3
(X = Ca, Ba) are regenerated and designed using the values obtained with Cambridge Serial Total Energy Package (CASTEP) software. The calculated lattice parameters show excellent agreement with theoretical and experimental values. The elastic stiffness constants confirm the mechanical stability of both compounds. Although XZrS
3
(X = Ca, Ba) is elastically anisotropic, it has little optical anisotropy. The electronic band structures of the material exhibit direct-bandgap semiconducting behavior, with values of 1.3 eV (CaZrS
3
) and 1.1 eV (BaZrS
3
) using the generalized gradient approximation (GGA), respectively, which is ideal for solar cell (0.9–1.56 eV) and optoelectronic device applications. Bandgap values of 1.9 eV and 1.6 eV are found for CaZrS
3
and BaZrS
3
, respectively, using the Heyd–Scuseria–Ernzerhof HSE06 functional, which is consistent with previous theoretical and experimental bandgap results. The optical properties including dielectric function, refractive index, absorption coefficient, reflectivity, and loss function are characterized using the GGA of Perdew–Burke–Ernzerhof (GGA-PBE) and HSE06 methods and are discussed in detail. Because of the relatively low Debye temperature (D), thermal conductivity of the lattice (kph), and minimum thermal conductivity (
K
min
), the studied materials can be used as thermal barrier coating (TBC) materials. The capacity of heat, Debye temperature, and thermal coefficient of expansion are all computed. |
doi_str_mv | 10.1007/s11664-024-11120-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066598791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066598791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-71c643774305711934faed43b2edc1b6891bee392320cfa81d9507c2d1d3597b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgRsFo7mR-BRd1sFooWFChuAmZTKZNrZMxSaXFjVtf0ydxbAV3Li53cc_3XTgIHQI9A0qTcwcQxyGhQUgAIKBkuYU6EIWMQBqPt1GHshhIFLBoF-05N6MUIkihg94HtdOTqce69gb7qcKj6cppKeZ4ZE2jrNfKYVOtT_lUzKWZqFqXCo-f7D3Dx-Ovj8_LdnJxiq_ECR4pa97cs_bKXeAe7mvrPBlZXUvdzNuq3Lw0Cy-8NvU-2qnE3KmD391Fj_3rh_yWDO9uBnlvSCSD0JMEZByyJAkZjRKAjIWVUGXIikCVEoo4zaBQimUBC6isRAplFtFEBiWULMqSgnXR0aa3seZ1oZznM7OwdfuSMxrHUZYmGbRUsKGkNc5ZVfHG6hdhVxwo_5HMN5J5K5mvJfNlG2KbkGvheqLsX_U_qW_sBoDq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066598791</pqid></control><display><type>article</type><title>Insight into the Physical Properties of the Chalcogenide XZrS3 (X = Ca, Ba) Perovskites: A First-Principles Computation</title><source>SpringerLink Journals</source><creator>Rahman, Md. Zillur ; Hasan, Sayed Sahriar ; Hasan, Md. Zahid ; Rasheduzzaman, Md ; Rahman, Md. Atikur ; Ali, Md. Mozahar ; Hossain, Aslam ; Khokan, Rashel Mohammad ; Hossain, Md. Mukter ; Mukhtar, Nurhakimah Mohd ; Islam, Md. Ariful</creator><creatorcontrib>Rahman, Md. Zillur ; Hasan, Sayed Sahriar ; Hasan, Md. Zahid ; Rasheduzzaman, Md ; Rahman, Md. Atikur ; Ali, Md. Mozahar ; Hossain, Aslam ; Khokan, Rashel Mohammad ; Hossain, Md. Mukter ; Mukhtar, Nurhakimah Mohd ; Islam, Md. Ariful</creatorcontrib><description>This study investigates the structural, mechanical, optical, thermal, and electronic properties of the ionic semiconducting materials XZrS
3
(X = Ca, Ba) within the framework of density functional theory (DFT). Here, the elastic constants, modulus (bulk, shear, Young's), ratios (Pugh, Poisson) and elastic anisotropy for XZrS
3
(X = Ca, Ba) are studied. Furthermore, the electronic, optical, and thermal properties for XZrS
3
(X = Ca, Ba) are regenerated and designed using the values obtained with Cambridge Serial Total Energy Package (CASTEP) software. The calculated lattice parameters show excellent agreement with theoretical and experimental values. The elastic stiffness constants confirm the mechanical stability of both compounds. Although XZrS
3
(X = Ca, Ba) is elastically anisotropic, it has little optical anisotropy. The electronic band structures of the material exhibit direct-bandgap semiconducting behavior, with values of 1.3 eV (CaZrS
3
) and 1.1 eV (BaZrS
3
) using the generalized gradient approximation (GGA), respectively, which is ideal for solar cell (0.9–1.56 eV) and optoelectronic device applications. Bandgap values of 1.9 eV and 1.6 eV are found for CaZrS
3
and BaZrS
3
, respectively, using the Heyd–Scuseria–Ernzerhof HSE06 functional, which is consistent with previous theoretical and experimental bandgap results. The optical properties including dielectric function, refractive index, absorption coefficient, reflectivity, and loss function are characterized using the GGA of Perdew–Burke–Ernzerhof (GGA-PBE) and HSE06 methods and are discussed in detail. Because of the relatively low Debye temperature (D), thermal conductivity of the lattice (kph), and minimum thermal conductivity (
K
min
), the studied materials can be used as thermal barrier coating (TBC) materials. The capacity of heat, Debye temperature, and thermal coefficient of expansion are all computed.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-024-11120-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorptivity ; Barium ; Bulk density ; Bulk modulus ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Debye temperature ; Density functional theory ; Elastic anisotropy ; Elastic properties ; Electronic properties ; Electronics and Microelectronics ; Energy gap ; First principles ; Heat conductivity ; Heat transfer ; Instrumentation ; Lattice parameters ; Materials Science ; Modulus of elasticity ; Optical and Electronic Materials ; Optical properties ; Optoelectronic devices ; Original Research Article ; Perovskites ; Photovoltaic cells ; Physical properties ; Refractivity ; Solar cells ; Solid State Physics ; Thermal barrier coatings ; Thermal conductivity ; Thermal expansion ; Thermodynamic properties</subject><ispartof>Journal of electronic materials, 2024-07, Vol.53 (7), p.3775-3791</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-71c643774305711934faed43b2edc1b6891bee392320cfa81d9507c2d1d3597b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-024-11120-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-024-11120-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rahman, Md. Zillur</creatorcontrib><creatorcontrib>Hasan, Sayed Sahriar</creatorcontrib><creatorcontrib>Hasan, Md. Zahid</creatorcontrib><creatorcontrib>Rasheduzzaman, Md</creatorcontrib><creatorcontrib>Rahman, Md. Atikur</creatorcontrib><creatorcontrib>Ali, Md. Mozahar</creatorcontrib><creatorcontrib>Hossain, Aslam</creatorcontrib><creatorcontrib>Khokan, Rashel Mohammad</creatorcontrib><creatorcontrib>Hossain, Md. Mukter</creatorcontrib><creatorcontrib>Mukhtar, Nurhakimah Mohd</creatorcontrib><creatorcontrib>Islam, Md. Ariful</creatorcontrib><title>Insight into the Physical Properties of the Chalcogenide XZrS3 (X = Ca, Ba) Perovskites: A First-Principles Computation</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>This study investigates the structural, mechanical, optical, thermal, and electronic properties of the ionic semiconducting materials XZrS
3
(X = Ca, Ba) within the framework of density functional theory (DFT). Here, the elastic constants, modulus (bulk, shear, Young's), ratios (Pugh, Poisson) and elastic anisotropy for XZrS
3
(X = Ca, Ba) are studied. Furthermore, the electronic, optical, and thermal properties for XZrS
3
(X = Ca, Ba) are regenerated and designed using the values obtained with Cambridge Serial Total Energy Package (CASTEP) software. The calculated lattice parameters show excellent agreement with theoretical and experimental values. The elastic stiffness constants confirm the mechanical stability of both compounds. Although XZrS
3
(X = Ca, Ba) is elastically anisotropic, it has little optical anisotropy. The electronic band structures of the material exhibit direct-bandgap semiconducting behavior, with values of 1.3 eV (CaZrS
3
) and 1.1 eV (BaZrS
3
) using the generalized gradient approximation (GGA), respectively, which is ideal for solar cell (0.9–1.56 eV) and optoelectronic device applications. Bandgap values of 1.9 eV and 1.6 eV are found for CaZrS
3
and BaZrS
3
, respectively, using the Heyd–Scuseria–Ernzerhof HSE06 functional, which is consistent with previous theoretical and experimental bandgap results. The optical properties including dielectric function, refractive index, absorption coefficient, reflectivity, and loss function are characterized using the GGA of Perdew–Burke–Ernzerhof (GGA-PBE) and HSE06 methods and are discussed in detail. Because of the relatively low Debye temperature (D), thermal conductivity of the lattice (kph), and minimum thermal conductivity (
K
min
), the studied materials can be used as thermal barrier coating (TBC) materials. The capacity of heat, Debye temperature, and thermal coefficient of expansion are all computed.</description><subject>Absorptivity</subject><subject>Barium</subject><subject>Bulk density</subject><subject>Bulk modulus</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Debye temperature</subject><subject>Density functional theory</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Electronic properties</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Instrumentation</subject><subject>Lattice parameters</subject><subject>Materials Science</subject><subject>Modulus of elasticity</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Original Research Article</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Physical properties</subject><subject>Refractivity</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgRsFo7mR-BRd1sFooWFChuAmZTKZNrZMxSaXFjVtf0ydxbAV3Li53cc_3XTgIHQI9A0qTcwcQxyGhQUgAIKBkuYU6EIWMQBqPt1GHshhIFLBoF-05N6MUIkihg94HtdOTqce69gb7qcKj6cppKeZ4ZE2jrNfKYVOtT_lUzKWZqFqXCo-f7D3Dx-Ovj8_LdnJxiq_ECR4pa97cs_bKXeAe7mvrPBlZXUvdzNuq3Lw0Cy-8NvU-2qnE3KmD391Fj_3rh_yWDO9uBnlvSCSD0JMEZByyJAkZjRKAjIWVUGXIikCVEoo4zaBQimUBC6isRAplFtFEBiWULMqSgnXR0aa3seZ1oZznM7OwdfuSMxrHUZYmGbRUsKGkNc5ZVfHG6hdhVxwo_5HMN5J5K5mvJfNlG2KbkGvheqLsX_U_qW_sBoDq</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Rahman, Md. Zillur</creator><creator>Hasan, Sayed Sahriar</creator><creator>Hasan, Md. Zahid</creator><creator>Rasheduzzaman, Md</creator><creator>Rahman, Md. Atikur</creator><creator>Ali, Md. Mozahar</creator><creator>Hossain, Aslam</creator><creator>Khokan, Rashel Mohammad</creator><creator>Hossain, Md. Mukter</creator><creator>Mukhtar, Nurhakimah Mohd</creator><creator>Islam, Md. Ariful</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Insight into the Physical Properties of the Chalcogenide XZrS3 (X = Ca, Ba) Perovskites: A First-Principles Computation</title><author>Rahman, Md. Zillur ; Hasan, Sayed Sahriar ; Hasan, Md. Zahid ; Rasheduzzaman, Md ; Rahman, Md. Atikur ; Ali, Md. Mozahar ; Hossain, Aslam ; Khokan, Rashel Mohammad ; Hossain, Md. Mukter ; Mukhtar, Nurhakimah Mohd ; Islam, Md. Ariful</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-71c643774305711934faed43b2edc1b6891bee392320cfa81d9507c2d1d3597b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorptivity</topic><topic>Barium</topic><topic>Bulk density</topic><topic>Bulk modulus</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Debye temperature</topic><topic>Density functional theory</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Electronic properties</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Instrumentation</topic><topic>Lattice parameters</topic><topic>Materials Science</topic><topic>Modulus of elasticity</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Original Research Article</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Physical properties</topic><topic>Refractivity</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Md. Zillur</creatorcontrib><creatorcontrib>Hasan, Sayed Sahriar</creatorcontrib><creatorcontrib>Hasan, Md. Zahid</creatorcontrib><creatorcontrib>Rasheduzzaman, Md</creatorcontrib><creatorcontrib>Rahman, Md. Atikur</creatorcontrib><creatorcontrib>Ali, Md. Mozahar</creatorcontrib><creatorcontrib>Hossain, Aslam</creatorcontrib><creatorcontrib>Khokan, Rashel Mohammad</creatorcontrib><creatorcontrib>Hossain, Md. Mukter</creatorcontrib><creatorcontrib>Mukhtar, Nurhakimah Mohd</creatorcontrib><creatorcontrib>Islam, Md. Ariful</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Md. Zillur</au><au>Hasan, Sayed Sahriar</au><au>Hasan, Md. Zahid</au><au>Rasheduzzaman, Md</au><au>Rahman, Md. Atikur</au><au>Ali, Md. Mozahar</au><au>Hossain, Aslam</au><au>Khokan, Rashel Mohammad</au><au>Hossain, Md. Mukter</au><au>Mukhtar, Nurhakimah Mohd</au><au>Islam, Md. Ariful</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the Physical Properties of the Chalcogenide XZrS3 (X = Ca, Ba) Perovskites: A First-Principles Computation</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>53</volume><issue>7</issue><spage>3775</spage><epage>3791</epage><pages>3775-3791</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>This study investigates the structural, mechanical, optical, thermal, and electronic properties of the ionic semiconducting materials XZrS
3
(X = Ca, Ba) within the framework of density functional theory (DFT). Here, the elastic constants, modulus (bulk, shear, Young's), ratios (Pugh, Poisson) and elastic anisotropy for XZrS
3
(X = Ca, Ba) are studied. Furthermore, the electronic, optical, and thermal properties for XZrS
3
(X = Ca, Ba) are regenerated and designed using the values obtained with Cambridge Serial Total Energy Package (CASTEP) software. The calculated lattice parameters show excellent agreement with theoretical and experimental values. The elastic stiffness constants confirm the mechanical stability of both compounds. Although XZrS
3
(X = Ca, Ba) is elastically anisotropic, it has little optical anisotropy. The electronic band structures of the material exhibit direct-bandgap semiconducting behavior, with values of 1.3 eV (CaZrS
3
) and 1.1 eV (BaZrS
3
) using the generalized gradient approximation (GGA), respectively, which is ideal for solar cell (0.9–1.56 eV) and optoelectronic device applications. Bandgap values of 1.9 eV and 1.6 eV are found for CaZrS
3
and BaZrS
3
, respectively, using the Heyd–Scuseria–Ernzerhof HSE06 functional, which is consistent with previous theoretical and experimental bandgap results. The optical properties including dielectric function, refractive index, absorption coefficient, reflectivity, and loss function are characterized using the GGA of Perdew–Burke–Ernzerhof (GGA-PBE) and HSE06 methods and are discussed in detail. Because of the relatively low Debye temperature (D), thermal conductivity of the lattice (kph), and minimum thermal conductivity (
K
min
), the studied materials can be used as thermal barrier coating (TBC) materials. The capacity of heat, Debye temperature, and thermal coefficient of expansion are all computed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-024-11120-x</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2024-07, Vol.53 (7), p.3775-3791 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_3066598791 |
source | SpringerLink Journals |
subjects | Absorptivity Barium Bulk density Bulk modulus Characterization and Evaluation of Materials Chemistry and Materials Science Debye temperature Density functional theory Elastic anisotropy Elastic properties Electronic properties Electronics and Microelectronics Energy gap First principles Heat conductivity Heat transfer Instrumentation Lattice parameters Materials Science Modulus of elasticity Optical and Electronic Materials Optical properties Optoelectronic devices Original Research Article Perovskites Photovoltaic cells Physical properties Refractivity Solar cells Solid State Physics Thermal barrier coatings Thermal conductivity Thermal expansion Thermodynamic properties |
title | Insight into the Physical Properties of the Chalcogenide XZrS3 (X = Ca, Ba) Perovskites: A First-Principles Computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T04%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20Physical%20Properties%20of%20the%20Chalcogenide%20XZrS3%20(X%E2%80%89=%E2%80%89Ca,%20Ba)%20Perovskites:%20A%20First-Principles%20Computation&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Rahman,%20Md.%20Zillur&rft.date=2024-07-01&rft.volume=53&rft.issue=7&rft.spage=3775&rft.epage=3791&rft.pages=3775-3791&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-024-11120-x&rft_dat=%3Cproquest_cross%3E3066598791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066598791&rft_id=info:pmid/&rfr_iscdi=true |