Mean curvature flow with generic initial data
We show that the mean curvature flow of generic closed surfaces in R 3 avoids asymptotically conical and non-spherical compact singularities. We also show that the mean curvature flow of generic closed low-entropy hypersurfaces in R 4 is smooth until it disappears in a round point. The main technica...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2024-07, Vol.237 (1), p.121-220 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the mean curvature flow of generic closed surfaces in
R
3
avoids asymptotically conical and non-spherical compact singularities. We also show that the mean curvature flow of generic closed low-entropy hypersurfaces in
R
4
is smooth until it disappears in a round point. The main technical ingredient is a long-time existence and uniqueness result for ancient mean curvature flows that lie on one side of asymptotically conical or compact shrinking solitons. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-024-01258-0 |